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Abstract

Title of Dissertation: Dynamics and Stability of Spacecraft
with Fluid-Filled Containers

Yakup (")zkazang, Doctor of Philosophy, 1994

Dissertation directed by: Professor P.S. Krishnaprasad
Department of Electrical Engineering

In this dissertation, we study the dynamics, stability and control of spacecraft
with fluid-filled containers. The spacecraft with fluid-filled containers is mod-
eled as a rigid body containing perfect fluid. A general model for the system is
obtained by using a Lagrangian approach where the configuration manifold is
the cartesian product of the rotation group and the group of volume preserving
diffeomorphisms. The dynamical equations are interpreted as a non-canonical
Hamiltonian system on an infinite dimensional Poisson space. The geometry of
the model is explicitly given by identifying its Lie-Poisson and Euler-Poincare
structure. The equilibria of the system are investigated. Based on the devel-
oped model, three control problems are studied for spacecraft with fluid-filled
containers. These problems are the stability of rigid rotations equilibria, the sta-
bilization of rigid rotations by means of torque control and the attitude control
problem. All stability and control problems are studied in an infinite dimen-
sional nonlinear setting without resorting to approximations. A key feature of
this dissertation is the exploitation of the mechanical and geometric structure of

the system to address the stability and control problems.
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Chapter 1

Introduction

An embarrassing episode of the history of space studies is the story of an early
U.S. satellite: Ezplorer I [48]. The satellite had been designed to spin about
its long axis (the one corresponding to the minimum moment of inertia of the
satellite). The attitude dynamics of the satellite in the orbit was modelled by
using the celebrated equations of Euler for rigid bodies. The steady spin of a
rigid body about the axes corresponding to the minimum or maximum moment
of inertia is a stable motion. Indeed, Ezplorer I was almost a rigid body, it
consisted of a long slender rigid body and light elastic booms attached to the
main body of the satellite. The mass of the booms was small compared to that of
the main body, so they could not exert large reaction torques on the body, hence
the satellite could be modeled as a perfect rigid body neglecting the dynamics
of the elastic booms. Indeed, the small torque assumption of JPL engineers was
correct. The fatal mistake was the expectation that these negligible effects would
produce negligible results. This is not the correct way of thinking in the realm of
conservative mechanical systems. Because of conservative nature of mechanical

systems, even infinitesimally small perturbations in the models might turn stable



motions into unstable ones. Indeed, this was what happened to Ezplorer I, the
satellite began to tumble over within the first ninety minutes of its mission in
orbit [38], [48]. The failure was due to the energy dissipation associated with
the “negligible” dynamics of the elastic booms which turned the formally stable
equilibrium of rotation along the long axis into an unstable equilibrium. The
U.S. aerospace community learned the lesson of Ezplorer I well and developed
successful solutions for satellite control technology since then.

Mechanical systems enjoy a special place among all dynamical systems. In-
deed, conservative mechanical systems can be thought of as bifurcation points in
the set of all possible systems [52]. This is why they should be treated with care
as far as their modeling is concerned. In the context of conservative mechanical
systems, all physically meaningful perturbations of a nominal model should be
given equal treatment in order to understand their effects on the nominal model.
The best way, of course, is to incorporate the perturbative dynamics as an inte-
gral part of the models. With this in mind, we will approach the main object of
investigation of this dissertation: spacecraft with fluid-filled containers.

Satellites and spacecraft are composed of interconnected rigid and non-rigid
parts. The antennas and booms form the major flexible appendages to the rigid
bodies of the space structures and their interactive dynamics and control have
been the subject of numerous studies. On the other hand, the rigid body-fluid
interactions which take place in spacecraft has received far less attention. The
liquid propellant fuel (which in some communication satellites constitutes half
of the satellite mass), cooling liquids and mercury ring dampers are parts of
spacecraft in which a rigid body-fluid interface appears. The effect of the rigid

body-fluid interaction on the spacecraft is twofold. One is the liquid slosh phe-



nomenon which changes the mass distribution of the spacecraft. The second
aspect is the energy dissipation that should be associated with the fluid motion
w.r.t. spacecraft, since any real fluid would have non-zero viscosity and would
behave as an energy sink. It is this dissipation that is believed to be a major
source of instability in spacecraft [4]. The liquid slosh problem can be dealt
with effectively by using variable structure fuel tanks. Indeed bellows, pistons
and diaphragms are being used in spacecraft to change the volume and shape
of the fuel tanks as the fuel is consumed. These type of devices are known to
have a good center of mass control performance [83|, [82]. Although by using
these methods, it is possible to constrain the fluids into fully-filled cavities, this
is no easy solution to cancel their effects on the rigid bodies of the spacecraft.
This is because of the internal degrees of freedom associated with the fluid mo-
tion. The infinite dimensionality of the fluid dynamics makes the problem a little
more difficult and interesting. While there have been some studies of the rigid
body-fluid interaction, the problem has not been solved in a form suitable for
incorporation into attitude dynamics modeling of spacecraft [38]. In contempo-
rary satellite control technology, the dynamics of spacecraft-fluid interaction is
only addressed as a perturbation to the attitude control systems. Although, by
experimental and computational studies [4], [35] it is generally believed that the
fluid in spacecraft is a cause of instability for attitude dynamics of the spacecraft,
satisfactory analitical results are hard to find but see [65].

Before discussing our approach to the rigid body-fluid interaction problem,
we would like to mention briefly some of the previous studies related to this
area. The studies of the dynamics of body-fluid interactions can be seen to fall

into three groups. The first group is the historic work about various aspects



of rotating fluids. It is known that Stokes was the first scientist who stud-
ied the problem. The names of Helmholtz, Lubeck, Lamb, Kelvin, Greenhill,
Zhukowsky, Sludsky, Gaf and Poincare are also cited in this regard [65]. The
second set of studies is the work of the Soviet applied mathematics community
during the fifties and sixties. The basic motivation behind this group of work
was the Soviet space studies. Various aspects of these studies are covered in
a book by Moiseyev and Rumyantsev [65]. Although, mechanical nature of the
rigid body-fluid interaction was well-formulated in this book, the stability results
were not of an exact nature either due to the approximate models or due to an
“approximate” stability concept they used. Yet, they considered various models
including both fully-filled and partially-filled cavities in rigid bodies. The last
group of studies are due to the U.S. aerospace circles. Numerous reports and
papers mostly about the technological aspects of the rigid body-fluid interaction
in spacecraft have been published since the sixties, see [4], [35]. Experimental
and computational studies dominate in this group whereas the Soviet studies
were more on the theoretical side. Overall, it could be said that despite various
studies about the rigid body-fluid interaction problem, a general framework in
which it is possible to address the problems of stability and control of spacecraft
containing fluids is not available yet [38]. We aim to develop such a framework
in this dissertation and to work out the related stability and control problems.

Our approach to the problem of rigid body-fluid interaction in spacecraft
will be a geometric one which we will pay special attention to the conservative
nature of the problem. The concepts and tools of geometric mechanics such
as Poisson manifolds, Lie groups and algebras, Lie-Poisson systems, geometric

reduction, energy-Casimir method etc. have proved to be useful not only in the



geometrization of mechanics but also in the control and stability of various me-
chanical phenomenea [14], [43], [79]. We believe that the geometric framework
for mechanics is powerful enough to address the stability and control problems of
rigid bodies containing fluids without resorting to ad hoc approximation meth-
ods. This dissertation is organized as follows.

In chapter 2, we compiled some geometric and mechanical concepts and tools
which we use in the later chapters to address the dynamics of a spacecraft con-
taining fluid. Among other things, we introduce the notions of tensors, differen-
tial forms, Lie groups and algebras, Poisson manifolds, Hamiltonian systems on
Poisson manifolds, Poisson reduction, Lagrangian mechanics as well as various
examples of the infinite dimensional systems which can be interpreted as conser-
vative (Lagrangian or Hamiltonian) systems. We also give different formulations
of the dynamics of incompressible fluids in this chapter.

Chapter 3 is devoted to the development and analysis of dynamical mod-
els for spacecraft containing incompressible fluids. Along the lines of [8], [29]
we choose the configuration manifold of incompressible fluid flow as the group
of volume preserving diffeomorphisms. The configuration manifold of the rigid
body-fluid system is taken as the cartesian product of this infinite dimensional
group and the rotation group SO(3). The coupled dynamics of the system is
obtained from the Euler-Lagrange equations (section 2). In this derivation the
Helmholtz decomposition of vector fields [21] and a simple decomposition of the
Lie algebra gl(3) proved useful. The resulting model gives a general and complete
characterization of the interaction between the rigid body of the spacecraft and
the fluid in the cavity. The dynamical model is quite general and its form does

not depend on the particular shape or location of containers in the rigid body.



We derive four basic equations of the rigid body mechanics and fluid mechanics
from the general rigid body-fluid model as special cases. These equations are:
the Euler’s equation for a rigid body, gyrostat (a rigid body containing inter-
nal momentum wheels) equation, the Euler’s equation for ideal incompressible
fluid flow and the Euler’s equation for incompressible flow in rotating reference
frames. By using a Legendre transformation, we represent the model in terms
of momentum variables as well as velocity variables (section 2). The constants
of motion for the rigid body-fluid system are determined (section 3). By using
both the momentum and velocity space representations of the model, we iden-
tify and classify the equilibria of the system (section 4). As a by product of
this analysis, we show that Beltrami flows are equilibrium solutions for Euler’s
equation for an incompressible ideal fluid. Various geometric interpretations of
the rigid body-fluid system are studied in section 5. In particular, we identify
the model as a non-canonical Hamiltonian system on an infinite dimensional
Poisson space which can be interpreted as in duality with the cartesian product
of Lie algebra so(3) and the Lie algebra of incompressible vector fields. A direct
result of the Hamiltonian nature of the system is the conservation of the energy
and the magnitude of the total angular momentum of the rigid body-fluid sys-
tem. Inspired by the form of the Poisson structure of the dynamical model, we
generalize Bernoulli’s equation for incompressible flow to a general Riemannian
manifold setting. Furthermore, we explicitly identify the Lie-Poisson structure
of the model expressed in momentum variables and the Euler-Poincare struc-
ture of the model expressed in terms of velocity variables. The Euler-Poincare
interpretation of the model also reveals the symmetries of the system and shows

that our derivation of the model from the Euler-Lagrange equations is indeed a



Lagrangian reduction process [57], [58]. In the last section of this chapter, we
modify the dynamical equation of the rigid body-fluid model in order to incor-
porate the viscosity of the fluid, and investigate the asymptotics of the resulting
dynamical system. The main contribution of this chapter is the development of a
general model for rigid body-fluid interaction in spacecraft and the identification
of various geometric structures of the model.

In chapter 4, we used the models developed in chapter 3 to address some
stability and control problems after presenting some generalities for the stability
and control of infinite dimensional mechanical systems. In section 1, following a
brief review of some stability concepts we give a stability theorem in a Banach
space setting which is essentially a reformulation of V. Arnold’s “convexity con-
ditions” [37] for the stability of infinite dimensional systems. In section 3, we
formally develop two dissipative control methods for the stabilization of mechan-
ical systems expressed in Lagrangian form. Here, we show that the vibrations
of a Lagrangian system (under an observability condition) can be damped by
using any passive controller satisfying certain conditions which generalize the
state-space conditions for a positive-real system [6]. In section 4, we specialize
the energy-Casimir stability method to mechanical systems with quadratic en-
ergy and casimirs. Here, we apply this modified test to various examples some of
which are novel. The stability of the rigid rotation equilibria of a spacecraft with
fluid is studied in section 5, where we apply the energy-Casimir method to ob-
tain a stability result. Based on the results of this section, in section 6 we study
the velocity control of a rigid body containing fluid. Here, we develop a (conser-
vative) control method which stabilizes any given rigid rotation of the system.

The proposed controller is simple and can be implemented by using internal or



external torque actuators. An important aspect is that the controller uses only
the angular velocity information to manipulate the torque input; it is a finite
dimensional controller which stabilizes an equilibrium of an infinite dimensional
nonlinear dynamical system. In section 7, we address the attitude control prob-
lem for the rigid body-fluid system. By using the Euler parametrization of the
rotation group SO(3), we develop a controller which drives the orientation of the
system to a desired orientation asymptotically in time. For all the stability and
control problems studied in this chapter, the solutions are developed by using
the conservative nature of the equations of a rigid body containing ideal incom-
pressible fluid. The effect of viscosity is also investigated for each problem. The
main contributions of this chapter are the stability and control results obtained
in sections 5,6 and 7. By exploiting the mechanical and geometric structure
of the models we are able to address these problems in an infinite dimensional
nonlinear setting without resorting to approximations.

In the appendix, we develop some finite dimensional models which approxi-
mate the dynamics of rigid bodies containing fluids in a qualitative sense. These
models, which we call pseudo models, by construction retain the essential con-
servative and geometric structure of the infinite dimensional model hence they
are of some merit to understand the qualitative dynamics of the rigid body-fluid

systems.



Chapter 2

Geometry and Mechanics

In this chapter, we present some basic concepts from geometry and geometric

mechanics. Basic references we follow are [1}, [2], [56], [21], [8].

2.1 Differentiation Concepts

The concepts of Frechet and Gateaux differentiation are generalizations of differ-
entiation on R™ to normed spaces. For detailed treatments of differential calculus
in normed spaces see [13], [10], [2] where we extracted the concepts given in this

section.

Definition 2.1 Let (E1,||-||1) and (Ea, ||-||2) be two Banach spaces, and O C F;

be an open subset. Then a function f : O — Ej is said to be Frechet differentiable

at To € O if there ezists a (bounded) linear map D f(zy) € B(E1, E3) such that
lim | f (o + 2) — f(z0) — Df(z0)zll2

=0.
llzjl1 -0 |lzl1

The operator D f(xo) is called the Frechet derivative of f at x.

If f is differentiable at all points o € O then f is said to be differentable on O

and the mapping Df : O — B(Fh, F») is called the derivative of f. The second



derivative D*f : O — B(E1,B(E., E,)) is defined as D*f = D(Df). Higher
order derivatives are defined similarly. A slightly more general differentiation

concept for functions defined on normed spaces is Gateaux derivative.

Definition 2.2 Let (Ey,| - ||1) and (Es,|| - ||2) be two normed spaces, and f :
Ey, — E5 be a mapping. The map f is called Gateaux differentiable at xy € E,,

if there exist §(xo,-) : By — Ey such that
) 1
lim ||;(f($0 +tz) — f(20)) — 6f (20, 2)||l2 = 0.
Then, one calls 6 f(xo, z) the Gateaur derivative of f at o in the direction .

Gateaux derivative ¢ f(zg,z) have to be neither continuous nor linear in z. An
important fact [13] is that if f is Frechet differentiable at zy, then it is also
Gateaux differentiable and both derivatives are equal. Based on this, if f is

Frechet differentiable at zg, then Df(zo) can be calculated as

DJ (o) = f(an,z) = limg (o +12) =  50))

We note that this is not equivalent to the definition of the Frechet derivative.
Example: Consider a bounded linear operator A : X — X, where X is a real
Hilbert space. Let f: X — R be given by f(z) = 3 < x, Az > . Then, the

Frechet derivative calculated at a point zy € X is given by

1 1
Df(zo)x = 3 <z, Azg > + 3 < Az,x9 > .

If A is a symmetric operator, then D f(zp) = Azy and we can write Df = A. If

A is not bounded then, Df = A is only the Gateaux derivative of f.

10



If the domain space E; of a map f : F; — R is a function space where the

norm on F; is given by the standard L? inner product, then we have

Df(u)h = -(;—ghdz
and ¥ € B(E,,R) = E is called the functional variation of .
These differentiation notions are for functions defined on linear spaces. How-
ever, if f is a mapping between manifolds instead of linear spaces, then we can
use the local coordinate patches to determine the derivatives.

The tangent and cotangent lifts of the functions defined on manifolds are

defined as follows [1].

Definition 2.3 Let f be a function from manifold M to manifold N. Then, the
tangent lift Tf : TM — TN is defined as

Tf((l?,’l)x) = (f(x)va(x)vx)
where v, € T,M and Df(x) : T,M — Ty N is the derivative of f at x.

Definition 2.4 Let f : M — N be a diffeomorphism. Then, the cotangent lift
T*f . T*N — T*M is defined by

Tf(y,py) = (z,D"f(z)py)
where (y,py) €T'N, z € M andy = f(z) € N. Here, D*f(z) : Tj,yM — T;N
is the dual map of Df(z) and defined by < D*f(x)py, vy >=< py, Df(z)v, >
for allv, € TN and p, € Ty M.

2.2 Tensors and Differential Forms

Tensors and differential forms are important tools for formulating mechanics in

a geometric setting. Some references are [1], [2], [56], [30]. The following brief

11



introduction closely follows [56]. Let E be a linear space, and E* be its dual.

Then a multilinear function f of the form

fEXE X..xE*XEXxExX...xE—>®R

~—
r times s times

is called a tensor of contravariant order r, and covariant order s (or an (r,s)
tensor). Let M be a manifold. An (r,s) tensor field on M is a function which
assigns an (r,s) tensor to each point z € M on the manifold such that £ = T, M
and E* = TyM. A vector field can be interpreted as a contravariant tensor field
of order 1 or a (1,0) tensor field. Covector fields are covariant tensor fields of
order 1 or (0,1) tensor fields and a Riemannian metric on a manifold defines a
(0,2) tensor field. Let v;,g; € T,M and p;, f; € Ty M. Let o be a (k,]) tensor
and 8 be an (m,n) tensor. Then the (k+m,l+n) tensor o @ B will be called the

tensor product of o and B and is given by

(a®ﬂ)(x)(p17'--apk:,flw--)frmvh"'7vlagl,--'agn) =

a(z)(P1y- -y Prs V1, - 0)BE) (f1y - s frms G155 Gn)-

Let {e;} be a basis for E and {e'} be a dual basis for E*. Then, in terms of

these bases , we calculate the components of an (r,s) tensor « as

Tlyeensber i1 in ] )
Ot s = a(e 7o €€,y eJa).

A skew-symmetric (0,k) tensor field is called a differential k-form or a k-form.
The set of k-forms on a manifold M is denoted by A*(M). The tensor multi-
plication of two differential forms does not necessarily give another differential
form. In order to define a closed multiplication between differential forms we

first define a skew-symmetrization operator A, which when applied to a (0,k)

12



tensor « produces a k-form A(«) which is given by
1
Avy, ..., v) = o w%;p sgn(m)aVm@), - - - » Um())- (2.1)
Here, sgn(m) is the sign of permutation 7 (i.e. 1 for even permutations, —1
for odd permutations) S, is the group of permutation of numbers 1,...,%, and
m(z) € {1,...,k}. Then, the wedge product o A § of a k-form « and an l-form 3

is defined as the (k+1)-form given as

aAf= Ala®f). (2.2)

We can represent a k-form as
o = ail,...,ikdx“ AN Al

by using the basis differential forms. Then, the ezterior derivatived : A¥ — AF+1

is defined as

da = ——aail"i"ik dx? Adz™ A ... A da', (2.3)
0z’

In particular, if o is a O-form (a function), then da is just the derivative of «,
i.e.;

(da); = 22

~ oz
and we sometimes use the notation do = do for this case. If « is a 1-form, then

we have:
_ aaj aai

(Ae)s = Bt ~ Bu

The exterior derivative is a linear operation and it commutes with the pull
back operation, i.e., ¢*da = dy*a. In other words it commutes with coordi-
nate changes on k-forms. Another important property is that d?a = 0 for any

differential form «. This is known as cocycle property and it is closely related to

13



the identity curl(grady) = 0 for a fuction 1. A k-form « is said to be closed
if da = 0. The Poincare lemma states that any closed k-form o can be written
locally as oo = df for a (k-1)-form 8. An analogous fact is that if a vector field

v satisfies curl(v) = 0 then it can be written as v = V4 for some function 1.

Definition 2.5 Let o be a k-form and X be a vector field on M. Then, the

interior product ixa of a with X is the (k-1)-form defined by
(ixa)(z)(ve, . .., vk) = a(z)(X(x),v2, ..., v).

In terms of the exterior derivative and the interior product, the Lie derivative

of a k-form « along the vector field X is given by
Lxa =dixa + ixdo. (2.4)

This equality is known as the Cartan’s formula.

2.3 Lie Groups and Lie Algebras

In the context of mechanical systems, Lie groups and Lie algebras play an impor-
tant role as the configuration manifolds of some important mechanical systems
and also as tools to characterize the dynamical symmetries. We present some

basic notions extracted from [1], [56].

Definition 2.6 A Lie group is a group G which is also a manifold such that
the group multiplication (g, h) — gh and the group inverse g — g~ are smooth

maps.

The left translation on G is defined by the map L, : G — G which is given

as Ly(h) = gh where g, h € G. Similiarly, the right translation R, : G — G is

14



defined as Ry(h) = hg.
Example: The set of all n x n invertible matrices GL(n) forms a Lie group with
matrix multiplication and matrix inversion taken as the group multiplication and

the group inverse respectively:
La(B)=AB, Ra(B)=BA, (A1 =41

GL(n) is an n? dimensional Lie group and all finite dimensional matrix groups
can be interpreted as subgroups of GL(n).

The concept of Lie algebra is closely related to the notion of Lie groups.

Definition 2.7 A Lie algebra is a vector space G equipped with a bilinear map

[-,:] : G X G — G satisfying the conditions:
1. Skew-Symmetry: [a,b] = —[b, d]
2. Jacobi Identity: [a,[b, c]] + [b, [c, a]] + {c,[a,b]] =0
for every a,b,c € G. This bilinear map is called Lie bracket.

Example: The set of all n X n matrices forms a Lie algebra with the matrix

commutation as the Lie bracket:
[A,B] = AB — BA.

This Lie algebra is denoted by gl(n).
Example: Let M be a manifold and let X (M) denote the set of smooth vector
fields defined on M. The linear space X' (M) is a Lie algebra with the bracket:

_bg._ 0f
[fag]J—ax 81:9

for f,g € X(M). This bracket on vector fields is known as the Jacobi-Lie bracket.
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Let {a;} be a basis for an n-dimensional Lie algebra G. Then, the (2,1) tensor

¢ which is given by
a;, 0] =Y ciax 4,5:1,2,...,n (2.5)
k

determines the bracketing operation on G in terms of the coordinates w.r.t. basis
{a;}. The constants cfj are called the structure constants of the Lie algebra G.
Due to the skew-symmetry and Jacobi identity conditions on Lie brackets, the

structure constants satisfy the following conditions:

csz—cfi ,5,k:1,2,...,n (2.6)
Zcfjcm+cﬁcfc';+cflcz;=0 t,5,0,m:1,2,...,n. (2.7)
k

Any (2,1) tensor satisfiying the above identities defines a Lie algebra on an n

dimensional vector space.

Definition 2.8 The adjoint map ad, : G — G on a Lie algebra G is defined as:
adgb = [a, b]

where a,b € G. Let G* denote the dual space of G. Then, the coadjoint map

adl : G* — G* is defined as the dual of the adjoint map, i.e.;
< adyc,b >=< c,adyb >
where a,b € G, c € G* and < -,- > 15 a pairing between G* and G.

A Lie algebra G can be associated with a Lie group G in a particular way.
To do this, we need an invariance notion. A vector field X on a Lie group G

is called left invariant if (T,Ly)X(h) = X(gh) for every g,h € G. Similarly, a
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vector field X is called right invariant if (T, R,)X(h) = X(hg). Let Xy denote
the set of all left invariant vector fields on G. A}, is a linear vector space and
it is isomorphic to the tangent space T,G of G at the identity element e. Let
¢ € T.G, then X¢(g) = T.Ly(§) is a left invariant vector field on G, and £ — X,
defines an isomorphism between T,G and Xj. Let [-,:]; denote the Jacobi-Lie

bracket on vector fields, then

[€,n] = [Xe, Xnls(e)

where &,7 € T,G = G defines a Lie bracket on 7,G. The tangent space G
equipped with this Lie bracket is called the Lie algebra of G. A similar con-
struction is possible via right invariant vector fields on G, then the induced Lie
bracket on G is obtained as the negative of the one given above.

Example: The Lie algebra gl(n) is the Lie algebra of GL(n).

Example: The smooth vector fields X' (M) on a manifold M can be interpreted
as the Lie algebra of the diffeomorphism group of manifold M [29]. The Lie
bracket on X'(M) is given by the negative of the Jacobi-Lie bracket [56].

Definition 2.9 Let M be a manifold and G be a Lie group. A left action of G

on M is a smooth mapping ® : G x M — M such that
ble,x) =z VreM
®(g,®(h,z)) = ®(gh,z) Vg,h € G, z € M.

A right action is a map ¥ : M x G — M that satisfies ¥(z,e) = z and
U(¥(z,g),h) = V(z,gh). Let ¢ € G, and let &, : M — M be given by

®,(z) = ®(g,z). Then, a left action is characterized by @, = id and @y, = P, Pp,.
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If M =V is a linear space and ®, : V' — V is a linear map then the action of G

on V is called a representation of G on V. An action ® is said to be
1. transitive if for any z,y € M thereisa g € G s.t. ®(g,7) =y
2. effective if @, = id implies g =e
3. freeif ®,(x) = x for some z € M implies g = e.

Example: Every group acts on itself by translations. The left translation on
a group is a left action of G on itself. Similarly, the right translation is a right
action on the group. These actions are transitive, effective and free.
Example: Let the map I, : G — G defined by I;(h) = ghg™' = R,-1Ly(h)
be called the conjugation map. This map defines a left action of G on G since
I, =id and

Iy 0 Iy(z) = ghzh™'g™' = I,

Example: By differentiating the conjugation map at g = e, we get the adjoint
action of G on G :
Ad:GxG—¢G
Ady(€) = (TLy)€ = T.(R;" o Ly)E.

This action is also called the adjoint representation of G on G. For the matrix
group GL(n), the adjoint action is given by Ad,¢ = gég~! where g € GL(n) and
€ € gl(n). The adjoint map ad on G can also be characterized by linearizing the

conjugation map at g = e, i.e:

adgn = Te(Adgn)€ = [€, 7).
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Let Adj : G* — G* be the dual of the adjoint action i.e.;
< Adjo, £ >=< a, Ad £ >
for all £ € G and o € G*. Then, the map ® : G x G* — G* which is defined as
®(g, ) = Ady-1x

is a left action and is called the coadjoint action of G on G*. On the matrix group
GL(n) the coadjoint action is given by Ad¢ = g7'¢g.
Example: Let @ be a left action of G on M. Then, the map & : GXTM — TM

which is defined as:

(I)(g, (CL’,’UI)) = ((I)g(x)a (Tszg)vx)

is called the tangent lifted action of G on TM where (z,v;) € T, M. Similarly,
the mapping ® : G x T*M — T*M which is given by

(I)(g’ (xapw)) = (q)g(:L‘), (T;(I)y—l)pz)

is called the cotangent lifted action of G on T*M where (z,p,) € Tx M.

2.4 Lagrangian Mechanics

Lagrangian mechanics is the formulation of conservative mechanical systems in
terms of the velocity variables. A classical reference is [34]. For an excellent
geometric treatment see [1] which we follow here. Let M be a manifold, z € M
and TM be the tangent bundle. We denote points on T'M by (z,v,). A mapping
L :TM — Ris called a Lagrangian. To model a physical system, the Lagrangian
is taken as L = K — V where K is the kinetic energy and V is the potential

energy of the mechanical system we want to model.
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The principle of critical action states that, if L is the Lagrangian of a con-

servative system, then the system evolves such that the condition

5 / L(z(t),v,(8))dt = 0 (2.8)

holds where the variation is taken w.r.t fixed end-points solutions. This principle

is equivalent to the Fuler-Lagrange equation:

%DzL(z,vz) — DiL(zv,) = 0 (2.9)

where D;L is the (Gateaux) derivative of L w.r.t. the i-th argument.
Let (2,p,) denote a point in the cotangent bundle T*M. Define the Legendre
transformation FL : TM — T*M as

FL(z,v,) = (2,DsL). (2.10)

That is we define the momentum variable p, = DyL € T; M. Define the energy
E:TM — R as
E(z,v,) = < D2L,v, > — L(z,v,). (2.11)

Then, the Euler-Lagrange equations can be interpreted as a Hamiltonian system

X g on TM equipped with a symplectic structure 2y:
QL(2,v,)(XEg,a) =<dE,a > VYo eT,M. (2.12)

The symplectic structure €2 is called the Lagrangian symplectic structure and

is given by:
D;D\L — DyDyL DyD,yL
QL (Z, ’Uz) =
—D,D,L 0
If FL is a difftomorphism, then the Lagrangian L is called hyperregular. For

a hyperregular Lagrangian L we define the Hamiltonian H : T*M — R by
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HoFL = E. That is:

H(z,p:) = < P2y ¢:(p2) > — L(2, ¢:(p2)) (2.13)

where @,(p,) = v,. Note that if L is hyperregular then for any z € M there exist
a unique map ¢, : Ty M — T,M. With this definition of H, we get v, = D,H €

T,M and the Euler-Lagrange equations can be re-written as
2=DyH , p,=—-D,H. (2.14)

This is the Hamiltonian vector field of H on 7*M equipped with the standard
Poisson structure.
Let u be a covector field on M which assigns a covector u, to a point z € M.

This external force field is incorporated into the Euler-Lagrange equations as

%DZL(z,vz) —DiL(2,v,) = us. (2.15)

Under the effect of the external force u, the Hamiltonian H evolves as

H(z,p,) = <uzz>=<u,uv, >

A force field u is called dissipative if < u,,v, > < 0,Vz € M. A force field
is called conservative if < u,,v, >= 0,Yz € M. Let R(z) : T,M — T:M be a
symmetric positive linear map, then the covector field u given as u, = —R(2)wv,
is a dissipative force field. Let G(z) : T,M — T;M be a skew-symmetric linear
map, then the covector field u which is given by u, = G(2)v, is a conservative
force field. In particular, if the (0,2) tensor field associated with G can be written
as G = da for some covector field «, then u, = G(2)v, is called a gyroscopic
force and it can be incorporated into the Lagrangian formalism by modifying
the Lagrangian L as L -+ L — < a,,v, > . For an investigation of gyroscopic

forces in the stability and control of mechanical systems see [79].
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2.5 Poisson Mechanics

Classical mechanics can be generalized to a geometric setting. One approach
to geometrization of mechanics is to characterize the conservative mechanical
systems on Poisson manifolds. Some references in this regard are [56], [53], [54],

[80], [68].

Definition 2.10 A Poisson bracket on a manifold M is an R-bilinear operation

{-,-} on C®(M) satisfying
1. skew-symmetry: {f,g9} = —{g, f}
2. Jacobi identity: {f,{g,h}} + {9, {h, f}}+{h,{f,9}} =0

3. Leibniz rule: {fg,h} = g{f,h} + f{g,h}

for every f,g,h € C®°(M). A manifold endowed with a Poisson bracket is called
a Poisson Manifold.

The third condition on the bracket implies that the value of {f,g} at z € M
depends on the functions f and g only via their differentials. This together
with the skew-symmetry condition implies that there is a contravariant skew-

symmetric (2,0) tensor W(z) : TyM x Ty M — R such that

W (z)(df,dg) = {f, g}(2). (2.16)

This tensor W is called a Poisson tensor or a Poisson structure. Associated with
the Poisson tensor W, there is a vector bundle map W*(z) : T M — T, M which

is characterized by

< a,WH(2)8 >= W(2)(c, B) (2.17)
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for o, § € T; M. In this study we will use the symbol W to denote both the tensor
and the associated bundle map; the meaning will be clear from the context.

If M is finite dimensional and {z;} are local coordinates, then the Poisson bracket
W is given by

{f,9}(z) = W¥ (z)g—ig—zgj- (2.18)

The conditions on a Poisson bracket impose the following conditions on the

Poisson tensor W:

W) = W) 6301, 0.19)
ZWuagZ Wuang +Wzkang =0 i,4,k:1,...,n (2.20)

!

Example: Let V be an inner product space, and W be a skew-symmetric

operator on V, i.e., < Wz,y >=< 2,—Wpy > . Then,

{f,9}(2) =< df (2), Wdg(2) >

defines a Poisson bracket on V and W : V* — V is a Poisson structure. Let M

be a manifold, T*M be its cotangent bundle and (z,p,) € Ty M. Then,

0 7
W(Z7pz) =
- 0

defines a Poisson structure on T*M. This constant structure on T*M is known
as the canonical Poisson structure on T*M.

Example: Let G be a Lie algebra and G* be its dual. Then, the brackets

{f,9}() = £ < p,[df, dg] > (2.21)

define Poisson structures on G*. Such brackets are known as the Lie-Poisson

brackets. We will denote G* equipped with + and — Lie-Poisson structures by
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G} and G respectively. If G is a finite dimensional Lie algebra with the structure
constants cfj, then the + Lie-Poisson structure W(u) : G xG — R on G* is given
by

W(h) = 3 ey (2.22)
Furthermore, one can check that a structure of this form is a Poisson structure
iff ci.“j are structure constants of a Lie algebra.
Example: Assume W is an invertible Poisson structure on a manifold M. Let
the 2-form  on M is defined by Q@ = W~!. Any 2-form which can be obtained as
the inverse of a Poisson tensor is called a symplectic form. A manifold equipped
with a symplectic form is called a symplectic manifold. On a finite dimensional

symplectic manifold, a symplectic form {2 satisfies

Qij = —Qj,; i,j : 1, ey (223)

0 Oy O, .
= 0 1,...,n. 2.
B2, + a2, + 5, 0 i,5,k:1,...,n (2.24)

These conditions directly follow from (2.19) and (2.20) if 2 = W1, We also note

that (2.24) is equivalent to dQ =0, i.e.,  is a closed form.
Example: Jacobi-Lie bracket [-, -], can be interpreted as a Poisson bracket on

the covector fields X*(M) defined on a manifold M. Let f,g € C®(X*(M)),

then we have
{f,9} = ldf.dgls

where we interpret df,dg € X. Note that, Poisson nature of the Jacobi-Lie

bracket comes from the fact that Jacobi-Lie bracket is a Lie algebra bracket on

vector fields.
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Given a smooth function H on a Poisson manifold M, we define a vector field

Xpg:M —>TM on M by
Xu(z) =W(2)dH(z) (2.25)

and call it the Hamiltonian vector field of H. Alternatively, the Hamiltonian

vector field Xy satisfies the equality
< dF(2),Xg(z) > = {F, H}(2) (2.26)

for any F € C®(M). A key aspect of a Hamiltonian vector field is the conserva-

tion of the Hamiltonian H along X :
H=<dH Xy >={H,H} =0.

Another important property is that the flow of a Hamiltonian system preserves

the Poisson structure, i.e.;
{F,G}ope ={Fop;,Gop:}

where ¢; denotes the flow of Xg. A function C € C*(M) is called a Casimir
function if
{C,F}=0
for any F € C*(M). Equivalently, a Casimir is a function which has its differ-
ential lying in the kernel of the Poisson structure: WdC = 0.
A Hamiltonian vector field Xy of the Hamiltonian H on a symplectic mani-

fold is defined as
Q(2)(Xu(z),v) =< dH(z),v > (2.27)

for all v € T,M and z € M. If Q = W~ then the vector fields characterized by

(2.26) and (2.27) become identical.
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Example: Let M be the space of the functions defined on the real line vanishing
at infinity. Then, the dynamical equation u; = wu, can be interpreted as a

Hamiltonian system on M, where the Poisson bracket is given by

© §f 9 &g

and the Hamiltonian H is given as

1 o0
H(u) = —/ u?(z)dz.
2J-00
The Poisson structure associated with this bracket is the differential operator

0z, which is a skew-symmetric linear operator on M. Then, one can calculate

dH = u and reconstruct the Hamiltonian equation as:
uy = WdH = 0,(dH) = 0,(u) = uy.

Let M, and M, be two Poisson manifolds with {-,-}; and {-,-}> as Poisson

brackets. Then, a function f: M; — M is called canonical (or Poisson) if
{F,K}sof={Fof,Kofh (2.28)

for every F, K € C*(M,). The flow of a Hamiltonian vector field defines a one
parameter family of canonical maps on the Poisson manifold itself. Let G be a
Lie group with G as its Lie algebra. Then, a useful fact [56] is that the cotangent
lifts of the left and the right actions on the group are canonical maps between
T*G equipped with the standard Poisson structure and G* and G respectively.

A useful tool in the investigation of mechanics in a Poisson setting is Poisson
reduction [56], [54], [80]. Consider a Poisson manifold M with the bracket {-, -} .
Let G be a Lie group acting on M by Poisson maps. Assume that M/G is a

smooth manifold which is equipped with the bracket {:, -} /¢ which is given by

{Fom Kom}y ={F,K}mgom (2.29)
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for all F, K € C*°(M/G). Here, w : M — M/G is the canonical projection which
is by construction a Poisson map. Now, consider the Hamiltonian vector field
Xy on M:

<dF,Xyg >={F,H}y VF € C®(M). (2.30)

If the Hamiltonian H : M — R is G invariant, then Xy reduces to another

Hamiltonian system X5 on M/G which is given by
<dF, X5 >={F,H}yc VF € C®(M/G) (2.31)
where the reduced Hamiltonian H : M/G — R is defined by
Hor=H. (2.32)

This process is known as Poisson reduction [54). There are related reduction
methods such as symplectic reduction [51], [1] cotangent bundle reduction [1],
[56] and Lagrangian reduction [57], [58], [87] which can be interpreted as special
cases of Poisson reduction. In particular, if M = T*G where G is a Lie group,
then a left invariant Hamiltonian system on T*G reduces to a Hamiltonian sys-
tem on G*. Similarly, a right invariant Hamiltonian system on 7*G reduces to a
Hamiltonian system on G}. This reduction is called Lie-Poisson reduction and

has an important place in geometric mechanics [53], [56].

2.6 Divergence, Gradient, Etc.

We consider a finite dimensional Riemannian manifold M. Let G denote the

Riemannian metric on M and < -, - >> denote the associated inner product, i.e.,

< a, b>= Z Z Gw(x)cﬂﬂ
t g
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where a,b € T, M. We will also use the notation o’ = G(z)a € T*M and ¢! =
G~ !(z)c € T, M for a vector a € T, M and a covector ¢ € T M. If M = R with

G(z) = 1 then it is called a Cartesian space. In this section we follow [1].

Definition 2.11 Let v be a vector field on M. The divergence of v which we

will denote by divv (or V - v) is defined as the scalar field given by

V'szi: det(G(2))

where v* is the i-th component of v.

(/A (C@))

In a Cartesian space, divergence is given by
ot
M ; or?
Definition 2.12 Let f be a function on M. The gradient of f which we denote
by grad f (or Vf) is the vector field defined as:

L Vfu,>=<df,v,> Vv, € T, M.
In coordinates, V f is given as:
Vf(z) =G (z)df(z) = (df)".

In a Cartesian space, this reduces to Vf =df = df.

The Laplacian Af of a function f is defined as the scalar field given by
Af =div(grad f) =V -V/f.

This operator is also called the Laplace-Beltrami operator. In coordinates, it is

given as:

(/aet(G(z)) af
8:::3 Z 3:1:’

- det(G (x))
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It can be shown that grad and —div are adjoint w.r.t to the L? inner product.
Hence, A acting on functions is symmetric and non-positive. In a Cartesian
space, Af is given by

_ *f
Af = ; 0zrioxt’

Analogs of all these vectorial operations can also be defined for differential forms.

0

Definition 2.13 Let M be an n dimensional Riemannian manifold with the
associated volume form p € A™. Then, there is a unique isomorphism % : A* —
A™F satisfying

aAN*xf=<a,B>pu
for all o, B € AF. This linear operator is called the Hodge star operator.
The codifferential operator § : AF — A*~1 is defined by

§ = (—1)"rHDH 4 d &,

The operator § satisfies the equality 62 = 0. The exterior derivative d and ¢ are

adjoint w.r.t. the inner product

(a,ﬂ)=/a/\*,8.

Definition 2.14 The Laplace-deRham operator A : A* — A* on differential

forms is defined by
A =dé +4d.

Since d and § are adjoint, A acting on forms is symmetric and non-negative:

(A, B) = (@, A8) , (Aaya) >0

Acting on a function (a 0-form), the Laplace-deRham operator gives the negative

of the Laplace-Beltrami operator acting on functions. By using the same symbol
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A, we define the Laplacian of a vector field v as the negative of its image under

the Laplace-deRham operator:
Av = —(A(V")

In 3-d Cartesian space, Av reduces to the usual definition of the Laplacian of a

vector field:

Av=V(V-v) =V x(V xvV)
where the curl operator V x is given as

62)3 8’02 3'1)1 61)3 8’1)2 8’01

vaz(axz " Oz3  0z3 O, 011 OTo

Geometrically, we have V x v = (x(dv*))!. A comparison of Laplace-deRham
operator on differential forms, and Laplacian on vector fields points out that d
is analogous to curl and ¢ is analogous to negative of the divergence. Let m
be a k-form. Based on this analogy, the curl of a k-form m is defined as the
(k+1) form dm. Similarly, the divergence of m is defined as the (k-1) form —dm.
The only missing concept is the curl of a vector field v which is defined on a

Riemannian manifold. In [69], curlv is defined as the (0,2) tensor field given by
curlv(X,Y) =< Vxv,Y > — < Vyv, X >

where X and Y vector fields on M and Vi is the covariant differentiation along

vector field X. In coordinates, the components of curlv are given as

ol
(curlv);j = o5;

Note that curlv is a skew-symmetric object. Hence, it is not only a (0,2) tensor,

but also a 2-form. Therefore, curlv is nothing but dv if we interpret v as a
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covector field. This simply implies that, the curl operation is more “natural” for

covector fields than it is for vector fields. In 3-d Cartesian space we have
curlv=-V X v

where "~ of a vector a = [ay, ag, a3]” is defined as

0 —as (253

fw?
Il

as 0 —a

—a2 a 0

We note that, here the " operation acts as the negative of the Hodge star operator
*. It is unfortunate that the curl of a vector field is generally represented as
another vector field, since this classical convention hides the more natural (and
more general) interpretation of the curl operator as the exterior derivative on

covector fields. For more on the curl operation see [62], [89], [88].

2.7 Some Useful Equations

Stokes Theorem: Let M be a compact, oriented n-dimensional manifold with

boundary OM. Let a be a smooth (n-1)-form. Then

fuin = fo

A useful consequence of the Stokes theorem is the divergence theorem:

/V-vdV: v-ndA
M oM

where v is a vector field on M C R, and n is the unit normal to boundary OM.

An equality related to the divergence theorem is [9]

/Mv-v¢dv - —/M(v-v)quv +/6Mv-mpdA
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where 1) is a function on M C R3. A direct result of this equality is that the
gradient operator is adjoint to the negative of the divergence operator if v van-
ishes at the boundary. Another boundary condition for which these operators
are adjoint is that v is parallel to the boundary oM.

We will also make use of the following identity in this study [9]:

/Mv-(sz)dV = /M(va)-st +[ v @xs)a

Here both v and s are vector fields on M C R®. A direct result is that curl is
a symmetric operator on smooth vector fields provided either v vanishes on the
boundary or v is normal to the boundary. We note that parallelness of v to the
boundary is not a boundary condition under which curl is a symmetric operator.

By combining the results that curl is a symmetric operator and the divergence
and the negative of the gradient operator are adjoint under vanishing boundary
conditions, we conclude that the Laplacian operator A on vector fields is sym-

metric and non-positive with vanishing boundary conditions.

2.8 Some Infinite Dimensional Systems

In this section, we give some examples of infinite dimensional systems which
can be interpreted as conservative (Lagrangian or Hamiltonian) systems. We
would like to emphasize that some of these examples (such as the generalization
of electromagnetism and the Hamiltonian structure of an infinite transmission
line) are not well-known.

Example: Maxwell’s Equations

The dynamics of an electromagnetic field in 3-d Cartesian space is given by the
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celebrated equations of Maxwell:

OFE

5 = VxB (2.33)
OB

_67 = —-VxXF (2.34)
V-E = p (2.35)
V-B = 0 (2.36)

where we have set all physical constants as unity for simplicity. Here, E is the
electrical field , B is the magnetic field and p is the time invariant electrical
charge density. Letting z = (E, B) € X(R3) x X(R?), Maxwell’s equations can
be represented as a Hamiltonian system z; = W(z)dH where W is a Poisson

structure given by
V x

-Vx 0

W(E,B) =
and the Hamiltonian H is given as
H(E,B):E/E de+§/B Bd.

The structure W does not depend on (E, B), therefore skew-symmetry of W
suffices to imply its Poisson nature. And, the skew-symmetry of W follows from
the symmetry of the curl operator [89]. The Poisson bracket associated with W
is known as the Born-Infeld-Pauli bracket [56]. It is interesting to note that the
conditions given by (2.35), (2.36) are satisfied automatically by the solutions of
the dynamical equations given by (2.33), (2.34). By using the vector identity
V-Vx =0 we get:

(V-B);=V-(B)=-V-(VXE)=0

pt:(V'E)gZV'(Et)ZV(VXB)ZO
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Therefore, the manifold determined by the conditions (2.35), (2.36) is invariant
under Maxwell’s equations. The given Poisson structure W can be obtained from
a canonical structure by reduction [56] to this invariant manifold. Maxwell’s

equations are equivalent to the (electrical) wave equation:

where A is the Laplacian operation on the vector fields. The left side of this
second order equation can be interpreted as a Lagrangian system associated with

the Lagrangian
1 T 1 T
L(E,E;) = E/Et Edz + §/E AEdz.

The right hand side is the external electrical field induced by the charge density.
Example: Generalized Electromagnetism

Let M be a Riemannian manifold of dimension n > 3. Let

pe A(M) , EeA'(M)

Be AN’(M) , o€ A(M)

where A¥(M) is the set of k-forms on M. We will assume that p and o are
constant in time, whereas F and B are not. We claim that the following set of
equations generalizes electromagnetism (i.e., Maxwell’s equations) to Rieman-

nian manifolds:

E, = 6B (238)
B, = —dE (2.39)
0 = —p (2.40)
dB = o (2.41)
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where d and § denote the exterior derivative and the co-derivative respectively.

We can write the dynamical part of the equations above as

E, 0 ¢ E
B, —-d 0 B

From the adjointness of 4 and d, we conclude that W defines a Poisson structure
on AY(M) x A%2(M). Here, the Hamiltonian H is given by

—_ 1 1 T
H(B,B) = ; / E-Bdo+7 / Tr(BTB)dz.

In order to show that these equations generalize Maxwell’s equations, we differ-

entiate (2.38) w.r.t. time and use (2.39) to eliminate B and we obtain:
Ey+0dE =0.

Then, we use the Laplace-deRham operator AE = d6F + ddF and (2.40) and

obtain

Note that this is a wave equation for the covector field E. In order to represent
the dynamics in terms of a vector field, we transform the equations by using the

# operation and get:

(B + AE) = —(dp)\.
Then, by using Vp = (dp)! and (Aa)* = —A(a#) for a covector field o we get
El —AE'=_Vp

which is nothing but the wave equation for the vector field E*. Therefore,
(2.38),(2.39),(2.40),(2.41) can be interpreted as a generalization of Maxwell’s

equations to Riemannian manifolds. Here, F is the electric field on M which is
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represented as a covector field, and B is the magnetic field which we take as a 2-
form on M. p and o are the electrical and magnetic charge fields on the manifold
respectively. Note that we take the magnetic charge ¢ as a 3-form whereas the
electric charge p is only as a 0-form. We also note that the charges are preserved

along the solutions of the dynamics:
pt=—06E, = -8B =0

o, =dB;, = -d’E =0

where we used d® = 0 and 62 = 0. Therefore, our assumption that p and o are
time-invariant is in harmony with this formulation. If p and o are given as time

variant charge fields, then we modify the equations as:

E, = 6B+j

where j € AY(M) and k € A*(M) are the electrical and the magnetic currents
satisfying 7 = —p; and dk = o; respectively.

Example: Equations of Linear Elasticity
Consider an elastic material filling a volume. Let u denotes the small displace-
ments from the relaxed configuration of the elastic continuum. Then, the dy-
namics governing the evolution of the small displacement field « is given [73] by

the Navier’s Equation:
pue — (A + p)V(V - u) — pAu = 0. (2.43)

Here, p is the density of the medium and A, u are the Lame constants. By

recalling that grad and —div are adjoint and that A is a symmetric operator on
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vector fields, we can obtain Navier’s equation as the Euler-Lagrange equation

associated with the Lagrangian:
1 T 1 T 1 T
L(u,u;) = 3 /ut udx + 3 /(()\ + pyu” V(V - u)dz + 3 /uu Audz.

Example: Infinite Transmission Line
The equations governing the electrical dynamics of an infinite (long) transmission
line [27] are given by
LI +u;+RI=0 (2.44)

where I and u denotes the current and the voltage distribution along the trans-
mission line. The constant inductance and capacitance distribution along the line
are denoted by L and C respectively while R and G denote the leakage param-
eters. Infinite transmission line equations can be interpreted as a Hamiltonian
system provided the leakage parameters are taken as zero. Letting z = (u,I),
the equations of an infinite transmission line (with R = G = 0) can be written

as zz = WdH where

0 —+0,;
— =0, 0

and

1 o]
H(u,I)= 3 /_ O’ 4 LA

The structure W does not depend upon (u,I), and the skew-symmetry of W

follows from the fact that the differential operator 0, is skew-symmetric. We

can calculate d,H = Cu, d;H = LI and reconstruct the equations easily.
Example: Korteweg-de Vries Equation

Small amplitude surface waves in a long and shallow (water) canal [1] are mod-

37



elled by the Korteweg-de Vries (KdV) equation:
Up — BUUg + Ugge = 0. (2.46)

Here, u is the field representing the deviation of the water surface from the
parallel water level. The KdV equation can be written as a Hamiltonian system

uy = WdH where W = 0, and the Hamiltonian H is given by:

1
H(u) = /u3 + —éuidaz

Skew-symmetry of the linear operator 0, gives the equation its Hamiltonian

character. Finally, we reconstruct the KdV equations as a Hamiltonian system:
ug = WdH = 0,(dH) = 0,(3u® — ugg) = 6ty — Ugga.

Example: Beam Equation
The dynamics of a thin, uniform beam clamped at both of its ends is given by

the Fuler-Bernoulli equation:
pug + Elugye =0 (2.47)

where u = u(z, t) denotes the small displacement of the position of the beam and
z € [0,1]. We take the mass density p and the structural flexity EI as constants
along the beam. The linear operator Oy4, associated with the (clamped ends)
boundary conditions u(0,t) = u(1,t) = u;(0,t) = uz(1,t) = 0 can be shown to
be symmetric. Therefore, the Euler-Bernoulli equation can be derived from the
Lagrangian

10, 10
L(u,u) = 5/0 uidz — 5/0 Ul gz dT.

Example: Plate Equation

Let w = w(x,y) denote the small displacement of a plate clamped at its bound-
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ary. Then the equation
ph’ 2
phwtt - 1—2Awtt +DA“w=0 (248)

where A? = A-A and A = 92+02 is known as Kirchhoff’s plate equation. This is

the equation of a conservative system, and can be obtained from the Lagrangian
h3
L(w,w;) =3 / p dx - = / DwA*wdx

as the Euler-Lagrange equation.

2.9 Basic Equations of Incompressible Fluid
Mechanics

In 3-d Cartesian space, the dynamics of an incompressible inviscid fluid is given
by
ov Vp

E-F(V V) P

(2.49)
where v is the velocity field and p is the density of the fluid [21]. The incom-
pressibility condition is incorporated as V - v = 0. The scalar field p is called

the pressure field. This equation is known as Fuler’s equation for incompressible

fluid flow. The evolution of the fluid density is governed by

Op

%=V () (2.50)

which is nothing but a consequence of conservation of mass. A fluid is called
homogeneous if p is constant throughout the fluid. Note that if an incompress-

ible fluid is homogenous at time %y, then it remains homogenous thereafter. A
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homogenous, incompressible and inviscid fluid is called a perfect fluid. The dy-

namics of a perfect fluid in a Riemannian manifold is given [1] by
vi+Vyv=-Vp (2.51)

where v is the velocity field of the fluid on the Riemannian manifold and Vv
is the covariant derivative of v along v.
The dynamics of an ideal fluid can be represented in different ways besides

Euler’s equation. The dynamical equation

QX—VX(VXV)z—YE

5 ; (2.52)

where s = p + %VTV is called Bernoulli’s equation for incompressible flow [8].

It can be shown that Bernoulli’s equation is equivalent to Euler’s equation by

using the vector identity
|
~2-V(v v)=(v:-V)v+vx(Vxv).

Another representation for incompressible fluid dynamics can be obtained by
applying the curl operation to both sides of Bernoulli’s equation. By doing so,
we get:

0 1
E(va)—Vx(vx(va))—;Vsz.

By defining the vorticity field w as w = V X v and by using the fact curl-grad =

0, we obtain:
ow

5= V x (v xw). (2.53)

This equation is called the vorticity equation. By using the vector identity

Vx(fxg)=£V-g)—g(V-f)-I[f gl
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and recalling that V- w =V -V x v =0 and V- v = 0, we obtain:

%:- = —[v,w]; = —Lyw. (2.54)

In this new form, the vorticity equation is not only valid on 3-d Cartesian space

but also on a Riemannian manifold where the vorticity is defined as w = dv.
Neither Euler’s equation nor its variants incorporate the dissipative effects

which are almost always present in real life fluids. The dynamics of an incom-

pressible viscous fluid is given by

ov _ Vp
5 " (v:-V)v=-— ; + ;Av (2.55)

which is called the Navier-Stokes equation [21]. Here, p is a positive parameter

and is known as the viscosity coeflicient of the fluid.

The main difference between the Navier-Stokes equation and the variants
of Euler’s equation is that, the Navier-Stokes equation describes a dissipative
dynamical system whereas the others can be interpreted as conservative (Hamil-
tonian) systems. We return to this point later in chapter 3, where among other

things we geometrize Bernoulli’s equation to Riemannian manifolds.
g
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Chapter 3

Rigid Bodies Containing Fluids

3.1 Introduction

In this chapter, we develop a model for rigid body-fluid interaction in spacecraft
and analyze the resulting model from the mechanical and geometric points of
view. The structure of this chapter is as follows. In section 3.2, we develop
a general model for a rigid body containing perfect fluid starting from a La-
grangian formulation followed by an implicit reduction process. Here, we take
the configuration manifold of the system as the cartesian product of the rotation
group SO(3) and the group of volume preserving diffeomorphisms and obtain
the model as the Euler-Lagrange equations. We derive the basic equations of
rigid body mechanics and fluid dynamics from the rigid body-fluid model we
obtained. Three equivalent representations of the model are given, which are
the main objects of study of this dissertation. Constants of motion for the dy-
namics of rigid bodies containing fluids are identified in section 3.3. A complete
classification of the equilibria of the system is given in section 3.4. In 3.5, we

explore the dynamic structure of the model from a geometric mechanics point
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of view. In particular, we show the model can be interpreted as a Hamiltonian
system on an infinite dimensional Poisson manifold. We generalize Bernoulli’s
equation to a Riemannian manifold setting. Lie-Poisson and Euler-Poincare in-
terpretations of the model are also studied in detail in this section. In the last
section, we modify our model in order to incorporate the viscosity of the fluid,

and investigate the dynamics of the resulting dissipative system.

3.2 Lagrangian Formulation

The Lagrangian formulation [1], [34] of mechanical systems starts with the iden-
tification of a configuration manifold M of the mechanical phenomenon we want
to model. The second step is the determination of the Lagrangian L as a smooth
function on the tangent bundle of the configuration manifold 7”M, and the La-
grangian is chosen as the difference between the kinetic and the potential energies
involved. The last step is to determine the dynamical equations of the system

and this is done by means of the celebrated Euler-Lagrange equations:

%(Dz-L(z@), £(t))) — D,L(2(t), 2(t)) = 0

where (z, £) are local coordinates of TM and D stands for the (Gateaux) deriva-
tive with respect to the subscript. The first two steps of the Lagrangian For-
malism; the determination of the configuration manifold and the Lagrangian re-
quires phenomenological knowledge of the physical system, and this constitutes
the core of the physical research about nature. The last step (determination of
the Euler-Lagrange equations) is nothing but a routine exercise in mathematics
which only requires a sound knowledge of differentiation.

Here, we will develop a model for a rigid body containing perfect (incom-
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pressible, inviscid and homogeneous) fluid via Lagrangian formalism. Before
proceeding further, it is necessary to explain what we mean. For us, a rigid body
containing perfect fluid is a rigid body with a cavity F with smooth boundary
OF. We assume that the cavity is fully filled by an incompressible, inviscid fluid
of homogeneous mass density. This density will be denoted by pr. Under these
conditions, if no external force field is assumed, the center of mass of the total
body-fluid mass distribution will be stationary with respect to inertial space.
We pick an inertial reference frame sharing its origin with the center of mass.
Another reference frame sharing the same origin but fixed at the body will be
used, this second frame will be called the body reference frame. Both frames
are assumed to be orthonormal and right handed. The material particles (body
or fluid) will be denoted by X. U(X,t) and n(X,t) will denote the position
of particle X at time ¢t w.r.t. the inertial reference frame and w.r.t. the body
frame respectively. With this notation, a complete indexing of the particles can
be given by n(X,0) = X. The velocity of particle X w.r.t. body frame will be
denoted by 7(X,t), and 7j(X, t) will be the acceleration of particle X. v(z,t) will
denote the velocity of the particle occupying the position z = n(X,t) at time ¢
w.r.t body frame. Since the inertial and the body frames share the same origin,
the relationship between U and 7 is given by a rotation matrix Y formed by
the direction cosines between the inertial reference frame and the body reference
frame; U(X,t) = Y (t)n(X, t). From this equality it is obvious that the cartesian
product of the set of rotation matrices Y and the set of all possible configura-
tions 7 for fluid particles can serve as a configuration manifold. Indeed, 7 can
not be totally arbitrary because of the incompressibility condition on the fluid.

The permissible configurations for the fluid particles will be the ones created by
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incompressible velocity fields parallel to the boundary of the cavity which we
denote by X;. We will denote the set of configurations of the incompressible
fluid particles by ¥, and will interpreted it as the volume preserving diffeomor-
phisms of the cavity [29]. In other words, we will assume that for any ¢, n(-,t)

is a volume preserving diffeomorphism on F. Therefore, we will take
M ={{(®),n( )Y () € SOB),n(t) € ¥} = SO(3) x ¥

as the configuration manifold of a rigid body with its cavity fully filled of a

perfect fluid.

3.2.1 Kinematics of the Configuration Manifold

Configuration manifold M = SO(3) x ¥ is a cartesian product, so we will look at
the kinematics on the rotation group and the diffeomorphism group separately.

The rotation group (or the special orthogonal group) of R is defined as
SO3) ={Y e R | YTY = I,det(Y) = 1}. (3.1)

This is a matrix Lie group [25] for which the left and the right multiplication is
given by matrix multiplication from left and right respectively. Associated Lie

algebra so(3) is the linear space of 3 x 3 skew-symmetric matrices
s0(3) = {Q e R¥3|QT = —Q} (3.2)

equipped with the Lie bracket given by matrix commutation [A, B] = AB — BA.

We identify so(3) with R3 by using the “hat” operation . Let Q € so(3) and
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w € N, w = [wy,ws,ws]T then

0 —W3z Wi
w=0= ws 0 —w (33)

—Wo Wi 0

defines a Lie algebra isomorphism between so(3) and %2 equipped with the vector

cross product as Lie bracket. Let a,b € R then
a X b=[a,b. (3.4)

Let Y (t) be a C* curve lying in SO(3). Then, Y € Ty SO(3) can always be
written as Y = YQ for a unique Q € so(3). If we interpret Y as the orientation
of a rigid body, then € gives us the angular velocity in the body frame. Similarly,
if we choose to write Y = WY for some W € so(3), then W characterizes the
angular velocity in the space coordinates. We will denote the elements of the
cotangent space T3.SO(3) by Py and we write Py = Y@ for Q € so*(3) which we
interpret as the momentum space of a rigid body. However, we should remind
that @) unlike 2 does not have an intrinsic physical meaning. Physical interpre-
tation of () is only possible if we associate a Lagrangian with the motion of the
rigid body. Finally, before passing to the kinematics of the volume preserving
diffeomorphisms, we summarize the notation we will use in this study for the

rotation group:

(Y,Y) e TSO@3), Y € T+SO(3) (3.5)
(Y, Py) € T*SO(3) , Py € TySO(3) (3.6)
Y =YQ, Qe so3) (3.7)

Py =YQ, Q € s0*(3). (3.8)
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Let F € R3 be a domain with smooth boundary 0F. We will denote the set
of all smooth and smoothly invertible maps n: F — F by ¥, i.e. ¥ is the set of
diffeomorphisms of F. This set is known to be Hilbert manifold provided 7 and
n~! have square integrable derivatives of sufficiently high order [29]. The subset
of ¥ containing the volume preserving diffeomorphisms leaving the boundary
OF fixed will be denoted by ¥. ¥ is a closed submanifold of ¥. Both of this
sets are Lie groups where the group multiplication is given by the composition

[56]. The right and left multiplications on ¥ and ¥ are given by
Ryn=no (3.9)

Lgn=¢don. (3.10)
We refer to [29], [56] for the technicalities of the diffeomorphisms groups ¥ and
¥ as Lie groups.

The Lie algebra associated with the diffeomorphism group ¥ is the space of
vector fields X’ defined on F [29]. For volume preserving diffeomorphisms, the
associated Lie algebra is the space of divergence-free vector fields tangential to
the boundary 0F. We denote this space by X;. The Lie bracket [-,-]; on X is
given by the negative of the Jacobi-Lie bracket [-,-]; of vector fields [56]. Let f

and g € &, then
[f,ele =-[f, gl =(g-V)I-(f- V)g. (3.11)
On divergence-free vector fields this bracket reduces to
[f.gl =V x (f x g) (3.12)

Now, we interpret the volume preserving diffeomorphism group as the configu-

ration space of an incompressible continuum filling F. Let z = n(X,t) denote
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the position of the continuum particle X. By differentiating n w.r.t. time we get
the material velocity V,, which we naturally interpret as an object in the tangent
space T, ¥

n(X,t) = Vp(X, t). (3.13)

We define the spatial velocity v by changing the coordinates of V, from the

material (X) to the spatial (z = (X)) coordinates:
v(z,t) = Vy(n7'(z),8) = Vyon . (3.14)

From these conventions, it is clear that the tangent space T, ¥ at point 5 will
consist of the elements of the form v o where v € X,;. Similarly, we represent
the elements M, of the cotangent space 7,V by mon where m € Xj. Here,
X denotes the linear space divergence-free covectors rather than the linear dual
of X;. In this formalism, the correct interpretation for v and m will be the
velocity field and the momentum field of the continuum respectively. As we
pointed out before for the rigid body, to fix the momentum field we must assign
a Lagrangian to the motion of the continuum. On the other hand, the velocity
field of the continuum v can be understood without any reference to a particular
energy function. Finally, we summarize the kinematics of the group ¥ of volume

preserving diffeomorphisms by means of the following notations:

(Vo) €T, V=1 €T,V (3.15)
(n, My) €T*V , M € T,V (3.16)
Va=von, ve Xy (3.17)
M,=mon, me X;. (3.18)
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3.2.2 Euler-Lagrange Equations

Now, we are ready to determine the energy content of the system. The kinetic
energy of the system is the sum of the kinetic energies of the individual material
particles. There is no potential energy involved because neither the position of
the rigid body in space nor the position of the fluid particles w.r.t. body, change
the energy content of the system. Therefore, the Lagrangian L associated with

a rigid body containing perfect fluid is given by:

1

LY, Yinn) = 5[ eV, 1IPdX (319)
1 : .
= 3 [, PX))Yn+Yn|*dX (3.20)
B+F
1 ToT<
= > /B penTYTY ndX (3.21)

1 . .
+5 /f pe(TYTV Y + i7YTY 7 + 2TVTY 7)dX (3.22)

where Y € T ySO(3) and ) € T, ¥. Then, the Euler-Lagrange equations will be

given by
déL 6L
aoL oL 2
atéy oY 0 (3:23)
ddL 6L
= _ = . 24
dtén  on 0 (3:24)

As we mentioned above, SO(3) and ¥ are Lie Groups, they are not linear
spaces. This creates an additional problem in the determination of the functional
derivatives of the Lagrangian. To differentiate the Lagrangian with respect to
Y € SO(3) we need a parametrization of the rotation group SO(3). Similarly
we need to know a parametrization for the volume preserving diffeomorphisms.
We could use, any one of the well-known parametrizations for SO(3), say Euler

angles, but finding parametrizations for the volume preserving diffeomorphisms
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group is a difficult task. To overcome this difficulty as well as to avoid the
problems of dealing with a particular parametrization which might turn the
calculations of the derivatives into a mess of symbols, here we take another
way. We will enlarge the domain of definition of the Lagrangian into a larger
manifold smoothly in which we could deal with differentiation easily; then we
will transport the derivatives back to their original domains by projections. L
is defined as a smooth function on T M, we enlarge its domain to TM where

M C M and T,M C T,M as a subspace. Then,

d . : d, =, . 2
Ei(DZL(za z)) - DZL(Z’ Z) = ,P('CE(DZL(z’ z)) - DZL(Z7 Z))

where L : TM — R, L(z,2) = L(z,%) , V(z,2) € TM and P is the projection
from T*M into T*M [11].

Here, we have M = SO(3) x ¥ and we choose to enlarge the configuration
manifold to M = GL(3) x ¥ where GL(3) is the group of invertible 3 x 3 matrices
and U is the group of diffeomorphisms of the cavity. The enlarged configuration
manifold is in the form of the cartesian product of two Lie groups as the original
one. Associated Lie algebras are gl(3) (set of all 3 x 3 matrices), and X (set of
velocity fields defined in the cavity F) respectively.

It is useful to note that there exists convenient decompositions of ¢g{(3) and X
which we make use of in the following. The Lie algebra ¢l(3) can be decomposed

as

gl(3) = s0(3) ® s0(3)* (3.25)

where the orthogonality should be understood with respect to the trace inner
product on matrices. so(3) is the space of 3 x 3 skew-symmetric matrices, there-

fore so(3)* will be nothing but the space of 3 x 3 symmetric matrices. Hence,
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any X € gl(3) can be written as

X =(X)s+(X)a (3.26)

where
(X), = %(X + XT) € s0(3)* (3.27)
(X)a = %(X — X7) € 50(3) (3.28)

define the orthogonal projections from gi(3) to the subspaces so(3)* and so(3) re-
spectively. This decomposition can be extended to the cotangent space Ty GL(3)

to get the projection operator
II: TyGL(3) = Ty SO(3) (3.29)

I(Py) =Y(Y™'Py)a (3.30)

where we followed Bailleul and Levi [11].
In incompressible fluid mechanics, the following decomposition of vector fields

has proven to be very useful .

Theorem 3.1 Helmholtz Decomposition The space of vector fields X on
F C R3 with boundary OF can be orthogonally (with respect to L? inner product)

decomposed as:

X=Xd®Xg

where

X;={veX|V.-v=0,v|0D}
X, = {veXlv=V4¢eCiD))

are the divergence-free vector fields parallel to the boundary and the gradient

vector fields respectively.
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Remark: For a proof of this theorem see [21]. We also remind that the
Helmholtz decomposition is also valid for vector fields defined on Riemannian
manifolds. An analog of the Helmholtz decomposition of vector fields is the
Hodge decomposition for covector fields. Indeed, Hodge’s theorem [2] gives a
decomposition of differential forms of any order, hence it is more general than
the Helmholtz decomposition.

We will denote the projection of X into Ay and &, by P4 and P, respectively.

Therefore, for v € X', we have
v = Pa(v) + Py(v). (3.31)

Since the elements of the tangent space of the diffeomorphism group U are of
the form v o ) where v € X, we can decompose [12] the tangent space T, ¥ of

the diffeomorphism group as
T,¥ = X0n® X, 0. (3.32)

Furthermore, if we identify the momentum fields m with the velocity fields v by
using an equality m(z) = S(v(z)) for some invertible map S, then the cotangent

space of the diffeomorphism group at n can be decomposed as
Tr¥ = S(Xy) on @ S(X,) o (3.33)

These decompositions of gl(3) and T will be very useful in the determination
of the functional derivatives of the Lagrangian L. First, however, we introduce
some more notation in order to express the results in a compact manner. We

define matrices A, B, C as:

A@) = [ pen(x,0n" (X, 84X (3.34)
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B(#) = [ pei(X, 00" (X, )ax (3.35)

o) = /B pen(X, )T (X, t)dX. (3.36)

From the incompressibility and homogeneity of the fluid flow, it follows that A(t)
does not depend on time. B(t) is skew-symmetric due to the constancy of A.
The time invariance of C(t) can be seen by observing that the defining integral
is taken only over the material particles of the rigid body.

The moment of inertia matrices associated with the fluid mass and the body

mass are defined as

Ir = /f pr(2) (Ltr(z2T) — 227)dz (3.37)

Iy = /B pa(@)(Ltr(zz7) — z2T)dz (3.38)

Recalling that z = n(X), and dz = dX (which is just an implication of incom-

pressibility) these inertia matrices can be written as:

Ir = 1Tr(4)- A (3.39)

Is = 1Tr(C)-C (3.40)

Therefore, A and C' are the coefficient of inertia matrices of the fluid mass and
the rigid body mass respectively. The moment of inertia matrix of the total
system will be denoted by Iy, and it is given as Iy = Ir + Ip.

The functional derivatives of the Lagrangian L are obtained by lengthy but

straightforward calculations. We give them by using the matrices we defined

above as:
6L .
— = YA+C)+YB 3.41
= = Y(4+0) (3.41)
oL T
e YB (3.42)
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= pr(YTY 7+ YTYR) (3.43)
JL : -
& = PrEYTY) (3.44)

where the derivatives are taken w.r.t. (Y,Y) € TGL(3) and (n,7) € T¥. We also
point out that the variations are taken w.r.t. the trace inner product for GL(3)
variables and L? inner product for ¥. Now, by using the projection operator II

(3.30), we pull back the Euler-Lagrange equations (3.23) to T'SO(3):

doL 6L,  _.d . .
(7~ 5p) = MgV (4+C)+YB) - VB

= I(Y(A+C)+2YB+YB)
= Y2 +Q)(A+C)+2YQB +YB)

= Y((@*+Q)(A+C)+20B + B),

where we used Y = YQ, Y = Y (Q%+ Q) and constancy of matrices A, C' and the
skew-symmetry of B. By assuming there is no external moment acting on the

system, we have:

(% +Q)(A+C)+20B + B), = 0. (3.45)

This differential equation captures the dynamics of a rigid body under the effect
of a perfect fluid fully filling its cavity. Note that, the effect of the fluid on the
rigid body is via only the A and B matrices. As we pointed out above, A is the
coefficient of inertia matrix for the fluid mass. In order to clarify the physical
meaning of B, as well as to represent the dynamical equations of the rigid body
containing fluid in vector form instead of matrices, we will use some equalities.

For symmetric A, C' € ®%*3, skew-symmetric B € R3*3 and w € R3 define

d = F(A+Cwxw (3.46)
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dy = %(1tr(A +0) = (A+C)w (3.47)

dy = %(ltr(B)—B)w. (3.48)

Then, by means of elementary calculations, it can be shown that

d = (Q%A+0)), (3.49)
dy, = (QUA+C))a (3.50)
ds = (QB),. (3.51)

where @ = . By using these equalities, (3.45) can be shown to be equivalent to:
Irw=Trwxw+bxw—b (3.52)

where b € R? is defined by b = 2(B),. Calculating b by changing the integration

variables from the material to the spatial variables we get:

b= /f_ prz X vdz. (3.53)

This is nothing but the total angular momentum of the fluid flow in the cavity
w.r.t. rigid body. It is clear that the net effect of the fluid motion on the body
is through the angular momentum of the fluid. If we interpret b in (3.52) as the
angular momentum of momentum wheels in a rigid body, then (3.52) gives us the
dynamical equation of a gyrostat [45]. Based on this equivalence, a rigid body
containing fluids which fully fill the cavities of the rigid body is called hydrostat
[65]. Furthermore, if we take w = w = 0 then (3.52) reduces to Euler’s equation
for a rigid body. In the case of rigid gyrostats, the internal rotors have only a
finite degree of freedom, however hydrostats involve infinitely many degrees of
freedom associated with the fluid motion. The above dynamical equation for

the rigid body motion only characterizes part of the dynamics of a rigid body
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containing fluid; the effect of the fluid on the rigid body. On the other hand, the
fluid motion in the cavity is affected by the rigid body which acts as the container
of the fluid. This side of the interaction is determined by the Euler-Lagrange

equations obtained by taking derivatives w.r.t. diffeomorphism variables:

d6L 6L  d, . g o
qon o T E(PF(U +YTYn) - pr(Y Y0+ YTY %)

= pr(i+ (YTY = Y'Y)i+ YY)
where we used (3.43) and (3.44). By assuming there is no external force field

acting on the fluid variables, we get:
pr(i(X,t) + (YTY = YTY)i(X, 1) + YTV (X, 1)) =0.  (3.54)

Note that this dynamical equation is a family of ordinary differential equations
indexed by the fluid particles (X). We also note that this equation is closely
related to the equation of motion for material particles in rotating reference
frames [34]. In this form (material representation) the above equation is of little
use, since we are not particularly interested in the fate of individual particles,
but with the velocity field created by their collective motion. To determine the
equations governing the dynamics in terms of the velocity field v, we make the

following substitutions:

n(X,t) — z(t) (3.55)
nX,t) — v(z,) (3.56)
AX,8) — %;i(a;, ) (3.57)

which account for switching from the material to the spatial representation of

the fluid motion. After substituting into (3.54), by using the equation Y = YQ
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and Y = Y(Q2 +Q), we get

pF(%‘ti +20v + (Q% + Q)z) = 0. (3.58)
By using
dv  0Ov
P +(v-V)v (3.59)

and rearranging the terms we get:

pp%;: = pr(—(v - V)v — 20v — (9% + Q)z). (3.60)

Recall that, until this point we took 7 as a member of the diffeomorphism group ¥
hence the velocity field v need not lie in the space of incompressible velocity fields
X; C X. Now, we project (3.60) into X; by using the Helmholtz decomposition
of vector fields:
ov ov ov
)= pp— — e .61
Palpr,) = prgy = Polor ;) (3.61)

We define the pressure gradient Vp as the gradient part of pF%—‘t':

Vp = Pg(ppaa—‘;) =Py (pr(~(v - V)v = 2Qv — (0 + Q)z)). (3.62)

We also define another gradient field Vs, which we call as the gauge gradient:
L 7 |
Vs=Vp+ V(Eppv v) + V(ippx 0%z). (3.63)
On can show that the gauge gradient is given by
Vs =Py(pr(v x (V x v) —2Qv)).

By using the pressure gradient, the dynamical equation for an ideal fluid in a
rotating rigid body is given as:

pp(?% + (v V)v+20v + (Q* + Q)z) = —Vp. (3.64)
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By using the gauge gradient Vs, we can write down the complete set of equations

for a rigid body containing perfect fluid as:

Irw=IrwXw+bxw—b (3.65)

ov : 1 7
pp(a +(v-V)v+2w xv+wXxz)= V(Eppv v)— Vs (3.66)
b= /fppx X vdz , w € s0(3), v €Ay (3.67)

Note that, these equations are a coupled set of ordinary and partial differential
equations. The interaction between the rigid body and the fluid is only through b
(the angular momentum of the fluid mass w.r.t body) and w (angular velocity of
the rigid body). The dynamical equation for the fluid motion given by (3.64) is
the correct formulation for the dynamics of an incompressible perfect fluid w.r.t.
a reference frame rotating with angular velocity w [36]. Furthermore, if we take
w = 0in (3.64) or in (3.66) then we get Euler’s equation for incompressible fluids
as expected:
ov

pF(E + (v-V)v) = -Vp. (3.68)

As we have shown in chapter 2, Euler’s equation is equivalent to Bernoulli’s
equation

pF—aa—: =v x (V x ppv) — Vs. (3.69)

As we show later in this chapter the Hamiltonian structure of the ideal fluid flow
is captured in this representation in a transperent way.

The dynamics of rigid bodies containing perfect fluids, given by (3.65) , (3.66)
is not in the form of an evolution equation due to the existence of the terms w
and b. In order to express the dynamical equations in this form, we define a

linear operator K from the space of covector fields A* defined on the cavity F
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of the rigid body to the angular momentum space so*(3) & R3:
K:X* — s0*(3) , K(m) = / z x mdz. (3.70)
F
We calculate the adjoint operator K* : so(3) — X:
<Km),w> = </fx><mdx,w >=wT/ T X mdx
F
= / w’(z x m)dz = / wTEmdz
F F
= —/ m” twdr = —/ m”(z x w)dz
F F
= /}_mT(w X z)dr =< m, K*(w) > .
Therefore, we have
K'w)=wxz, zelF. (3.71)
By using the operators I, X* and the vector identity
1
EV(VTV) =(v-V)v+vx(VxvV) (3.72)
(3.65), (3.66) can be rewritten as

It prK w Irw + K(ppv)) X w
_ ( (pFv))  am)
prKC*  prT Vi v x (V x (ppK*(w) + prv)) — Vs
The form of this equation suggests to us to define some new variables. For v € X

and w € s0(3), we define m € X* and ¢ € s50*(3) as

q = Irw+K(prv) (3.74)

m = ppv+ ppK*(w) (3.75)

We will denote this mapping by 7 : so(3) x X — s0(3)* x X*. Indeed, T is
closely related to the Legendre transformation associated with the Lagrangian

(3.19) and we will return to this point later in this chapter. Note that, if we
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interpret v as the velocity field of the fluid and w as the angular velocity of the
rigid body then ¢ and m can be interpreted as the total angular momentum of
the rigid body-fluid system and the momentum field of the fluid w.r.t the inertial
space respectively.

The operator 7 as well as its inverse 7! will be very useful in the deter-
mination of various representations of the model of a rigid body containing a
perfect fluid. In order to determine the operator 7!, we will use the following

lemmas.

Lemma 3.1 Let a,r € R3. Then, r x (a x r) = (Ltr(rrT) — rrT)a.
Proof: By direct calculation.

Lemma 3.2 ppKK* = If.

Proof: Let a € R3, then we have

prKK*a = ppK(axz), 2 € F
= pp/a;x(axx)dx
f
= / pr(1tr(zz’) — 227)adz
.7.'
= / pr(1tr(zzT) — z27)dza
F

= IFa

where we used the previous lemma in the passage from the second line to the

third and the definition of . [

Corollary 3.1 K is bounded in the L? sense.
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Proof: Boundedness of operator K follows from the finite dimensionality of

Ip:
Ir = prKK* (3.76)
Vel = llprKK*ll, pr >0 (3.77)
el = prlKINKT ] = prllK]? (3.78)
Therefore, ||K|| = (“i—iu)% is finite, hence K is bounded. n

Remark: From the dependence of the operator T (3.74), (3.75) on K it is easy

to see that 7 is a bounded operator too.

Proposition 3.1 Let T : 50(3) X X — s0*(3) x X* be given by (3.74), (3.75).
Let q € 50*(3),m € X*. Then, T~!: 50*(3) x X* = 50(3) x X is given as:

T~ '(g,m) = (I5'q — Iz'K(m), p2 — K*Ig'q+ K*I5'Km).
F
Proof: We verify this by checking 77'7 =Z. Let w € s0(3),v € X.

THTw,v) = T~ Irw+K(prv), prv + ppK* ()

= (([J,\_’)
where
@ = I3'(Irw + K(prv)) = I5' K(prv + prK* (w))
1
¥ = —(ppv + prK* (W) — K*I5*(Irw + K(pv)) + K*I5' K(ppv + prK* (w)).

pr

By using, It = Ig + Iy and Ir = ppKK* we get:

o = Iz ((Is+ prKK")w + K(ppv)) = I5'K(prv) — prlp' KK* (w)
= w+ prl5'KK*(w) + Ig'K(prpv) — I'K(prpv) — prl5 KK* (w)

= W
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and

v = v+K'(w) - KI5 (I + prKK )w + K(ppv))
+ KI5 K(ppv) + prK*I[5'KK* (w)
= v+K*(w) - K*w) — ppK* I3 KK* (w)
— KI5 K (ppv) + K* I3 K(ppv) + ppK* [5' KK* ()

= V.

Remark: 7! is a bounded operator.

By using the transformation 7, (3.73) can be expressed as
T(@,vs) = ((Irw + K(ppv)) X w,v X (V x (prv + ppK*(w))) — V).
Therefore, we have
(@, vy) = T ((Irw + K(prv)) X w,v x (V x (ppv + ppK*(w))) — Vs)
and this is equivalent to the following dynamical equations:
w = Iz ((Irw + K(ppv)) X w) (3.79)

— I3 % (V % (prv + ppK* (@) — V)

ov

= =V X (VX (v+K*W))) —p'Vs (3.80)

+ KI5 (— (Irw + K(prv)) X w)

+ K*I5'K(v x (V x (ppv + ppK*(w))) — Vs).
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This is what we will call the velocity space representation of the dynamics of
rigid bodies containing perfect fluids. Here (w,v) € so(3) x X; and the gradient
field Vs is the gauge which constrains the flow of the system to that space.
The operators 7 and 7! are bounded linear operators, hence they define
a diffeomorphism between so(3) x Xy and T (so(3) x Xy) = N. Therefore, the
dynamics represented in terms of the momentum variables (¢, m) = 7T (w,v)
is equivalent to the dynamics in terms of the velocity space variables. The

dynamical equations given by (3.79) and (3.80) are equivelent to:

g=gqx Iglq —q X IEIIC(m) (3.81)
om _ M ¢ xm)— KTl x (V x m) (3.82)
ot pr

+ K*Iz'K(m) x (V x m) — Vs

where ¢ and m are the total angular momentum of the rigid body-fluid system
and the momentum field of the fluid w.r.t. inertial space respectively. We call
these equations the momentum space representation of equations of rigid bodies
containing perfect fluids. The domain of this dynamical system is the space N
as defined above. Note that, by construction of the space N the gauge gradient
Vs not only restricts (w,v) into the velocity space so(3) x X but also (g, m)
into the momentum space N'. We will interpret the linear space N as in duality
with the velocity space so(3) x Xj.

The dynamical equations for a rigid body containing perfect fluid do not have
a simple form neither in the velocity nor in the momentum space representation.
On the other hand, the following hybrid representation not only saves space but

also reveals the geometric structure of the equations which we study later in this
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chapter:

¢ = qXuw (3.83)
%—? = vx(Vxm)—Vs. (3.84)

In this section, we developed a dynamical model for a rigid body containing
perfect fluid. The dynamical model is represented as three different but equiva-
lent sets of dynamical equations: in velocity space (3.79), (3.80), in momentum

space (3.81), (3.82) and in a hybrid form (3.83), (3.84).

3.3 Constants of Motion

The Hamiltonian nature of the various representations of the rigid body-fluid
system will be treated later in this chapter. Here, in this section we look at some
constants of motion of the system without studying the underlying geometric
structure. An important aspect of rigid bodies containing ideal fluids problem is
the conservative nature of the dynamics. A manifestation of this is the existence
of some conserved quantities.

Energy The following scalar quantity

<(g,m),7}(g,m) >

DN | =

H(gm) = T ((g,m), (¢, m)) =

which we refer as the energy of the rigid body-fluid system is a conserved quantity
of the rigid bodies containing perfect fluids. Here, we use 7! both as a linear
operator and as a bilinear form. We define H as the energy defined in terms of

the velocity variables:

H(w,v) = H(T (w,v)) = % < T(w,v), (w,v) >.
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By using the operators 7" and 7! we defined in the previous section, H and H

can be calculated as

| T -1 1 rm"m T s =1
H(q,m)=§q Iz q—q' Iy IC(m)+§/ o +m K Iz K(m)dz (3.85)
3 1 r 1 T T
H(w,v) = v Irw + —2-/va vdz + w” K(ppv). (3.86)

Note that, as it is clear from the expression for H, the energy of the rigid body-
fluid system is composed of three parts. The first term is the energy of the rigid
motion of the system, the second term is associated with the kinetic energy of
the fluid flow w.r.t. the rotating rigid body and the last term is the interaction
energy between the rigid body and the fluid. This last coupling term is essential
to the understanding of the interaction between the rigid body and the fluid
flow. Before, showing that the energy is a conserved quantity, we show that the

energy H (hence H too) is always non-negative.

Proposition 3.2 The energy H given by (3.86) always takes non-negative val-

ues.

Proof: We will use the formulas I+ = Ig + Ir and Ir = prpKK* to do a
completions of squares:

_ 1 1
H(w,v) = EwTITw + 3 /prvTvdx + WwT'K(ppv)

1 1
= §wT(IB + prKK")w + 3 /]__pFVTvdx + wTK(ppv)

1 1 1
= —2-wTIBw + EpprICIC*w + 2 /prvTvdm + wTIC(va)

1 1
= EwTIBw +5< prK* (W), K*(w) >

1
+ 3 /fpvavda:—i- < w,K(ppv) >

= et Tsw 3 [ or (K@) (K ()da
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+/]:,0F(VTV + 2(K*(w))Tv)dz

= w5 [ or(v+ @) + K (0)ds.

(3.88)
By identifying m = ppv + ppK*(w), we get
H==wTIgw+= | —mTmdz >0
2 2JF pp
where we used Iz > 0 and pr > 0. [ ]

It is a lot easier to prove the conservation of the energy by using H (3.85) and
the hybrid representation of the model (3.83), (3.84). We calculate the first

variation of the energy H:

0H _ -

i I3'q - I3'K(m) = w

H  m .1 T _
om = on K'Ig'g+K'Ig'K(m) = v.

Before calculating H, we state a very simple and useful equality which we will
use over and over in this work.

An identity: Let a,b € R3. Then, a”(b x a) = 0.

Now, we can calculate H:

dH 0HT 0HT
dH -
dt dq

il
!

= wl(gxw)+ /fvT(v x (V x m))dz — /f_vTVsda:

where we use (3.83), (3.84) for ¢ and m;. The first two terms on the right hand

side of the above equality vanish due to the identity given above. The last term
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vanishes because of the orthogonality of the incompressible vector fields to the
gradient, vector fields. Therefore, H = 0; the energy H is a conserved quantity.
This is only natural, since we derived the rigid body-fluid model from an Euler-
Lagrange equation which does not involve any non-conservative effects on the
system.

Total Angular Momentum Apart from the energy, the most important
conserved quantity is the magnitude of the total angular momentum of the rigid
body-fluid system. We have defined the total angular momentum Itw + K(ppv)

as the dual variable ¢. The magnitude of the total angular momentum is con-
served:

d. o T, T

Sllall* =2¢"4=2¢" (g xw) = 0.
Note that, here we only used (3.83). Closely related to the conservation of
the magnitude of the total angular momentum is the conservation of the total
momentum of the system w.r.t. the inertial space. As will be clear from the
following derivation, the dynamical equation ¢ = ¢ X w is equivalent to the

conservation of total angular momentum in space, i.e. Yq¢ = constant:

d L
d—t(Yq) = Yji+Yyq
= Y§+YQq
= Y(¢+Qq)
= Y([@+wxq)

= Y(gxw+wxgq)

= 0.

In other words, if we had taken the principle of conservation of total angular

momentum in the space as a given, then we could have written the dynamical
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equation ¢ = ¢ X w in one shot. Instead, we started from the opposite end, and
derived this principle as a by product of the Euler-Lagrange equations associated
with a rigid body containing perfect fluid.

Helicity: In fluid mechanics, the scalar field vI'(V x v) associated with the
velocity field v of a fluid is known as the helicity density [64]. The corresponding
integral

/DVT(V X v)dz

is called helicity. Helicity is a conserved quantity of perfect fluid flow i.e. Euler’s

equation, if 0D = 0. Here, we define the integral
/ m”(V x m)dz

associated with the momentum field m of a perfect fluid as generalized helicity.
If we take m = v generalized helicity reduces to the traditional helicity integral,
yet generalized helicity can also be defined for fluids in rotating frames; m =
prv + ppK*(w). Neither helicity nor the generalized helicity is a constant of
motion for perfect fluids in the cavities of freely rotating rigid bodies. However,
it is important to note that the conservation of helicity for Euler’s equation
for a perfect fluid is closely related to whether curl operator is symmetric or
not. If 0D = 0, then curl operator is symmetric and as a result helicity is
preserved. By the same token, generalized helicity would be a constant of motion
for rotating fluids if 9D = 0. This implies that generalized helicity is the natural
generalization of the helicity to a more general set of fluid flows including rotating

fluids.

68



3.4 Equilibria of the System

A way of understanding the dynamics of a rigid body containing fluid is to study
their equilibria. In order to characterize the equilibria of rigid bodies containing

perfect fluids, we define the following subsets of the velocity space so(3) x X

Y1 = {(w,v)€s0(3) x Xy|w=0,v=0}

Yy = {(w,v)€350(3) x Xy|w=k,v=0,

<)
NN

0}
¥,V x (V x ¥) = pp'Vs, v # 0}

&= \d,d

Y3 = {(w,v)€s0(8)x Xy|w=0,v

Yy = {(w,v)€s03)x Xy|w#0,v#0,¥w,v) = (w,V)}
where ¥;(w, v) denotes the solution of the dynamical system starting from the
initial condition (w,v). By using the Legendre transformation 7 we map these
subsets to the momentum space N and define &; = 7(%;) , ¢ = 1,2,3,4. The
sets 2; can be computed as:
% = {(gm)eN|g=0,m=0}
S = {(g,m) €N |q=Ird,m=K*(p2), Ir& = M\0,d # o}

£ = {(g;m) €N |g=K(pr¥),m = pp¥,¥ x (V x ¥) = pp' Vs, ¥ # 0}

\g]
Sy
It

{(g,m) e N'| (¢, m) = T((w,V)), (w, V) € Zu}

Note that, by construction the sets X; are mutually disjoint, so are the sets ¥
since T is a diffeomorphism.

Proposition 3.3 Let ¥ = UY;, and & = UL;. Then, (w,V) is an equilibrium of
the dynamics of rigid bodies containing perfect fluid (3.79), (8.80) iff (w,v) € X.
Similarly, (g, m) is an equilibrium of (3.81), (3.82) iff (¢, m) € z.

Proof: For computational convenience, we will use the hybrid representation

§=gxw
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om
'a—t—VX(me)—VS‘.

which is equivalent both to (3.79), (3.80) and (3.81), (3.82). Let f and g denote

the right hand side of ¢ and m, respectively. Suppose (w, v) € so(3) x X; is an

equilibrium point, then there are four alternatives:

1. If (w,v) = (0,0) then f = 0,9 = —Vs. On the other hand, the gauge

gradient Vs is given by
Vs =Pylpr(v X (V X v) = 2w X Vv)).

Therefore, at the null solution, w = 0,v = 0, Vs vanishes. Hence, X, is an

equilibrium point.

. Assume that there exists an equilibrium such that w # 0,v = 0. Then,
at this particular equilibrium we have ¢ = Irw + K(pv) = Izw, hence
f = Irw x w = 0. Therefore, w should be an eigenvector of Ir. Such
equilibria constitute the set ¥,. Furthermore, v = 0 implies Vs = 0 hence

any point in ¥, is an equilibrium point.

. Let w = 0,v # 0 be an equilibrium. Then, f =0 and g=v x (V X m) —
Vs =0. But w = 0 implies m = ppv, hence g = 0iff vx (Vxv) = pf‘1Vs.
Therefore, such equilibria lie in ¥3. Furthermore, any point in Y3 satisfies

f=0,9g=0,1ie. any point in ¥3 is an equilibrium point.

4. If w # 0,v # 0 is an equilibrium point, then by definition it lies in X4.

The equilibrium X is the null solution of the system. It corresponds to the case

where the fluid particles are stationary w.r.t. the rigid body and the rigid body
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is stationary w.r.t inertial space. ¥, is associated with the rigid rotations of
the system: the fluid mass is stationary w.r.t the body, and the whole system
rotates around one of the principal axes of the total moment of inertia matrix
(Ir). The equilibrium set X3 corresponds to the solutions for which the rigid
body is steady in space and the fluid in it is in equilibrium, i.e. velocity field of
the fluid is stationary in time.

Y); and 3, are non-empty sets for any rigid body without any restriction on
the geometry of the cavity. On the other hand, the existence and nature of X5
and Y4 might depend upon the shape of the cavity and the relative orientation of
the cavity in the rigid body. For example, for the cavities having the shape of a
surface of revolution, it is possible to find equilibria in ¥4 provided the rotation
axis of the rigid body coincides with the symmetry axis of the cavity. However,
for cavities of arbitrary shape, it is difficult to determine whether ¥, is empty or
not. Before stating some interesting implications of the structure of equilibria of

rigid bodies containing ideal fluids, we introduce the notion of Beltrami fields.

Definition 3.1 Let v be a vector field defined on a domain D € R2. Then, v is

called Beltrami field if its curl is parallel to the vector field itself:
vx (Vxv)=0.

Remark: Note that, any eigenfunction of the curl operator is a Beltrami field,
but there might exist Beltrami fields which are not eigenfunctions of the curl
operator. Beltrami fields are generally associated with equilibrium solutions
in fluid mechanics, electromagnetism and plasmas. In the context of plasma
physics, the eigenfunctions of the curl operator are known as Chandrasekhar-

Kendall eigenfunctions and they form a complete orthonormal set for the space
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of incompressible vector fields [88].
We assume vy, # 0 is a Beltrami field in &y and investigate (w,v) = (0, vy)
as a solution of the dynamics of a rigid body containing perfect fluid. At this

particular solution, (3.83), (3.84) reduce to

=0 (3.89)

om
ot

Since v, is a Beltrami field it is parallel to its curl. Therefore, the right hand

=vVy X (V X vab) — Pg(vb X (V X PFVb))- (390)

side of m; vanishes as well. In other words, (w,v) = (0, V) is an equilibrium in
Y5. Note that such a solution corresponds to a rigid body stationary in space
with a Beltrami flow inside the cavity. Also recall that the dynamics of ideal
fluids in non-rotating containers is simply given by nothing but Euler’s equation.
Therefore, we have just reproduced a not well-known fact: Beltrami flows are
equilibria of perfect fluid flow.

The fact that X3 is an equilibrium set of the dynamics of a rigid body con-
taining a perfect fluid yields an unexpected result too. Recall that I+ = Ip + I

and ¢ = Itw + K(prv). Then, the equation ¢ = ¢ X w is equivalent to
Ipw = Ipw X w+ Irw X w — Irw — K(ppvi) + K(prv) X w. (3.91)

This is nothing but the equation of a rigid body with the inertia matrix /g under

the effect of the external torque
Te = IF(U Xw— IFU) - ’C(pFVt) + IC(pFV) X w. (392)

Now, let (w, v) be an equilibrium point in ¥3 i.e. w = w = 0 and vy = 0. Then, it
is easy to see that at any such equilibrium point the external torque 7, vanishes.

Also note that, since w = 0 we have a perfect fluid in a fixed container in space.
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Therefore, the stationary flow v should be a steady flow of the Euler equation

for perfect fluids. Hence, we have proven the following.

Proposition 3.4 Consider a perfect fluid filling a domain D C R3; (3.68). Let
v be a stationary flow of the perfect fluid. Then, the torque exerted by v on the

boundary 0D is zero.

Note that, if we lock a rigid body containing fluid then the torque exerted on
the rigid body drops to K(prv:) which is nothing but the rate of change of
the fluid momentum as expected. Therefore, if the torque exerted by a perfect
fluid on its locked container is zero, then this implies that X(prv) is constant.
One way of creating a situation in which the torque exerted by the fluid on the
boundary 8D is zero is to choose a boundaryless container. As a subset of R?,
the only boundaryless set is R itself. So, our analysis implies that the angular

momentum of an ideal fluid in R? is a conserved quantity as also shown in [67].

3.5 Geometric Interpretations of the Model

In this section, we investigate the geometric structure of the various representa-

tions of rigid bodies containing perfect fluid.

3.5.1 Hamiltonian Structure

In the previous section, we have identified some constants of motion for the rigid
body-fluid system which is a manifestation of the conservative nature of the
dynamics. Here, we explicitly give this conservative structure as a Hamiltonian

system on a Poisson manifold. We show that the dynamics of a rigid body
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containing a perfect fluid can be written as a Hamiltonian system
z = WRF(Z)dH(Z)

where z € N' = T (s0(3) x Xy), Wgp(2) : s0(3) x X3 — N is a Poisson structure

and H is a scalar function on N.

Proposition 3.5 The dynamics of a rigid body containing perfect fluid (3.81),
(3.82) defined on N has a Hamiltonian structure. This structure is characterized
by the non-canonical Poisson bracket {-,-}rr, Poisson structure Wgp, and the

energy H which are given as:

§FT 6G 6FT omT Om, 0G

Wy(q) 0
WRF(q’m) = !
0 Wmn(m)
where
Wy(gle = ¢gxa=da
Wn(m)b = bx (Vxm)—Vs
ace®R |, beX;
and

1 1 1 1
H(g,m) = 5qujglq ~¢"Iz'Km + 5/, p—Fmedx +3 fmTIC*IgllCmd:v.

Proof: First, we show that the dynamics can be written in terms of the struc-
ture Wgr. Then, we prove the correspondence between the bracket {-,-}rr and

the structure Wgp. Finally is shown that the non-canonical bracket {-,-}gr on
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N can be obtained from the canonical bracket on T* M via (Poisson) reduction,
where M = SO(3) x 0.

We first determine the first variation of the energy H:

0H

G " Iz — I3'Km (3.93)
6H
el pﬂF + KI5 Km. (3.94)

Then, the dynamical equations associated with the Poisson formulation (2 =

WrrpdH) should have the form:

Lt
qg=4q 5q

Oom O0H

E—EX(VXHI)—VS

By substituting the first variation of the energy into these equations, we get:

gx Igtq—qx Iz'Km

Q.
il

om - _ —IC*I,}qu(me)-i-Ex(me)
ot PF

+ K*Iz'Km x (V x m) — Vs

which agrees with (3.81), (3.82).

Secondly, we establish the equivalence of the structure Wxrp with the bracket
{'7 '}RF:

oF 6G oF 6G
< dF,Wgr(2)dG > = < %’Wq(q)% >+ < 5—m’Wm(m)5—m >
SFT G SFT 6G SFT
it L(E(E X (V x m)) = 5—Vs)ds

Now, let Vxm =k, and k = K then a quick calculation yields:

_0m Om”

Oz oz
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Then by using aT(b x (V x m)) = —aT(V x m)b , we obtain:

SFT 6G SFT domT Om, 6G
< dF, Wrp(2)dG > 0q qdq + F 5m( oz oz )5mdx

The last term on the right hand side above vanishes due to the orthogonality of

Ay and X, and we get:
< dF,WgrpdG >gp= {Fa G}RF

which establishes the equivalence of the structure and bracket notations.
Finally, we will show that the bracket {-,-}rr can be obtained from the

canonical Poisson bracket on T* M by reduction, where M = SO(3) x ¥.

Let ((Y, Py)(n, M,)) € T*M. Consider the canonical bracket on 7*M which is

given as:

1, (5FT 5q 5FT§)
2°"\SY 6P, 3Py Y
SFT 6G  6FT §G

At T 5M,,EdX (3.96)

{F,G}(Y,Pr)(n,My)) = (3.95)

where (Py, M;) € Tjy,,M and
PY:YQ7 Q:_QTa QESO*(3)
M,(X)=mon(X)=me Aj.

Furthermore, we define ¢ by § = Q, and take (¢,m) e N = T(*I,id)M.
The left action of SO(3) on itself is given by left multiplication. The right
action of the volume-preserving diffeomorphisms group ¥ on itself is given by a

change of arguments [55]. Let R € SO(3) and ¢ € ¥, then

(R, (Y, Py)) = (RY, RPy)
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gives the cotangent lift of the left action of SO(3) on itself by R. The cotangent

lift of the right action of ¥ on itself by 1 is given by

(¢a (77’ Mn)) = (77 o1, Mo 1/))
D . T'(*Y,n)M — T(*I,'Ld)M = N as

(Y, Py),(n, My)) = (Y'Y, Y7 'Py)(non™, Myon™))

= ((1,Q), (Id,m))
= ((,9), (Id,m))

Note that, this map is characterized by the cotangent lifts of the group actions
given above, hence it is canonical. We pull back the canonical Hamiltonian

structure {-,-} from T*M to N by using ®. By applying the chain rule we have:

1 0QO6F .., 6Q 6G 0Q O0F ..0Q 6G
§TT((5—Y(5—@) (5Py 6Q) (éPy?@)T(W@))
/(5_m oF om 0G om 6F . ém 6G
f

o Ei) (6M m) (6M (5m) (677 5m) %X

{Fod,God}

We have the equalities:

9 _p, 09 _
sy Y spy
ém im Om

— =7 —_— =
oM, " énp Oz
Substitution of these terms into the bracket and some rearrangement yields

{(Fo®,God} = ;T (‘SQ Q) (3.97)

SFT omT _6G O6FT _Om 6G
om 0n Lom ~ dm Lo omin (398

@YY -YTYQ)

By using YTY = I and by changing the variable of integration from the material

(X) to the spatial (x) variables while keeping in mind the incompressibility
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condition, which implies dX = dz, we get:
1, 6FT 6G 6FT omT Om. 6G
F == — (0T — 0)— — -
{Fo®,God}=Tr( 30 @ V5ot ) om o ~ 52 om

Furthermore, if we represent @) as a vector ¢ by using the equation § = @, then

dz.

after some more calculations we obtain

SFT 6G s 5FT(8mT ~ am)é_G
5 76 " Jrom " 8z 0z’ om
= {F, G}RF(q,m) =< dF, WRFdG >RF -

{Fod,God} = dz

The Hamiltonian structures of rigid body motion and perfect fluid flow are
well known [53], [56]. Here, we have shown that the interactive dynamics of
rigid body and perfect fluid in the case of a rigid body containing a perfect fluid
also has a Hamiltonian structure. We note that although the rigid body-fluid
bracket is in decoupled form, the dynamics are coupled since the Hamiltonian of

the system has a coupling term.

3.5.2 Generalized Bernoulli’s Equation

Here, we consider only the fluid part of the dynamics of a rigid body containing

perfect fluid given in the hybrid form:

om

—a—t—zvx(me)—Vs.

In order to generalize this equation which is given in Bernoulli’s form, we first

make some rearrangement of the terms in the above equation:

om

5 = v X (Vxm)—Vs

= —(Vxm)xv-—Vs

= —(Vxm)v-—Vs.
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By recalling curl(m) = —(V/x\m) = dm, we have

—88—1:1 = (curl(m))v— Vs
= (dm)v - Vs
= —iy(dm) —ds

where we used the definition of contraction operator iy and the fact Vs = ds in

a cartesian space. Our claim is that the resulting equation
m; = —iy(dm) — ds (3.99)

which we call the generalized Bernoulli’s equation for the perfect fluid flow, not
only characterizes a perfect fluid in %2 but also in a Riemannian manifold. To
validate this claim, we will show that the Euler’s equation for a perfect fluid in

a Riemannian manifold [1]
vi=—Vyv— Vp (3.100)
can be obtained from the generalized Bernoulli’s equation.

Proposition 3.6 Let the momentum field m € X of a perfect fluid in a Rie-
mannian manifold be related to the velocity field v € X; by m = v°. Then, the

generalized Bernoulli’s equation (8.99) reduces to Euler’s equation (3.100).
Proof: By substituting m = v’ into (3.99), we get:

v = —iy(dv’) — ds.
We use the Cartan’s formula Lyo = diya + iyda to obtain :

v, =d(iyV") — LyV" — ds.
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Then, by using the formula Ly (v*) = (Vyv)’ + 1d(||v|?) [1] we get:
1 .
Vi = —(Vyv) — §d(||v||2) + diyv’ — ds

1 .
= —(Vyv)' — d(§||v||2 — iy V" + ).
Now, we define p = 5 — 1||v|[%. Then, by using iyv" = ||v||? we obtain:

V: = _(Vvv)b_dp

= _(Vvv)b - (Vp)b'

We tranform these covectors to vectors by using the # operation and obtain the

generalized Euler’s equation:
v; = —Vyv — Vp.

Remark: Euler’s equation (3.100) which defines the dynamics of an incom-
pressible fluid in a Riemannian manifold is well known [1], [56]. On the other
hand, the generalization of Bernoulli’s equation to Riemannian manifolds seems
to be novel. We would like to emphasize that Euler’s equation only describes the
dynamics of a perfect fluid in a Riemannnian manifold, however the generalized
Bernoulli’s equation is of a more general nature and capable of describing fluid
motion in rotating frames too. We also note that Bernoulli’s equation does not
depend upon the particular Riemannian structure on the manifold, since the
exterior derivative and contraction operation are defined without any reference
to a Riemannian structure.

The generalized Bernoulli’s equation also yields a generalized vorticity equa-
tion:

Wt = _ﬁvw.
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Proposition 3.7 Let the vorticity field w € A? be defined as w = dm where m
is the momentum field of a perfect fluid. Then, the generalized vorticity equation

follows from the generalized Bernoulli’s equation.

Proof: First we take exterior derivative of both sides of the generalized

Bernoulli’s equation (3.99) and obtain:
dm; = —d(iy(dm)) — d®s.
By using Cartan’s formula Lya = diya + iyda and d? = 0, we get

dm; = -Ly(dm)+i,d’m
where we used d? = 0 once again. Then, by using w = dm we get the vorticity

equation:

w; = —LyW.
]

Remark: The vorticity equation is valid in rotating frames too, since the vor-
ticity w is defined via the momentum field m not by the velocity field v.
Finally, we point out that the Hamiltonian structure of the generalized Bernoulli’s

equation is associated with the Poisson bracket
{F,G}(m) = / (dm)(dF, dG)dz.

Note that this is nothing but the generalization of the fluid bracket part of the
rigid body-fluid bracket.
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3.5.3 Lie-Poisson Structure

The dynamics of a rigid body containing fluid can be interpreted as a Lie-Poisson
equation on A which can be interpreted as in duality with so(3) x X;. Lie-Poisson
structures are related to linear Poisson brackets on duals of Lie algebras and
their history goes back back to the late nineteenth century and Sophus Lie [56].
However, the close relationships between the Lie-Poisson structures, symmetries
of dynamical systems and the geometric reduction methods has been revealed
in the last two decades. Here, first we present some generalities about the Lie-
Poisson concepts which we extracted from [56]. Then, we interpret the dynamics
of a rigid body containing perfect fluid as a Lie-Poisson system.

Let G be a Lie group and G be its Lie algebra. For a,b € G let [a, b] denotes

the Lie bracket of a and b. Let G* denote the dual space of G.

Definition 3.2 A dynamical equation defined on G* is called a Lie-Poisson

equation if it can be written as

for some h : G* — R, where p € G* and ad* is the coadjoint map on G*.
Lie-Poisson equations are closely related to Lie-Poisson brackets on G*.
Definition 3.3 Let f,g € C®(G*). Then, the bracket
{7}e 1 C¥(G) x C¥(G") -+ C(G")
given by
of 99
o’ Sp
is called + (—) Lie-Poisson bracket on G. G* equipped with + and — bracket are

{frgts(w) =% <]

denoted by G, and G* respectively.
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The important fact is that Lie-Poisson brackets satisfies the axioms of Poisson
brackets. Being such, for given differentiable hamiltonian functions on G*, they
define Hamiltonian systems on G*. Hamiltonian systems induced by Lie-Poisson

brackets are given by Lie-Poisson equations.

Proposition 3.8 The equations of motion for the Hamiltonian system associ-
ated with the Hamiltonian h : G* — R with respect to the &+ Lie-Poisson brackets

on G* are given by the Lie-Poisson equations

d
dIZ ZFadlshlL
Proof: Let f,h € C®(G*). Then, the evolution of a function f : G* — R
along a Lie-Poisson equation is given by

4 _ _ ‘5_f5_l£

We also have,

4]
Ul = <l

= :}:<,Uz,—ad5h% >

)
= FL ath/,L, 6f

of
< @,:Fadg_ﬁ_,u > .

The result follows from the non-degeneracy of the pairing and the arbitrariness

of f. |

Another important aspect of the Lie-Poisson equations is that they are related
to left or right invariant Hamiltonian systems on 7*G. Let A and p be the

cotangent lifts of the left and right translations of the group respectively:

AMT'G->GExG =2TG
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p:T'G->GxG =2TG
A(9, ) = (9, T2 Lyary)
p((9, ) = (9, T¢ Ryorg)
where o, € T;G and g € G. Then, the following proposition characterizes Lie-

Poisson reduction which is nothing but a special case of Poisson reduction applied

to Hamiltonian systems having full group symmetry.

Proposition 3.9 Lie-Poisson Reduction Let H : T*G =~ G x G* — R be a

left (respectively right) invariant energy function on T*G ,i.e. ;
Hol=H (Hop=H).

Then, the Hamiltonian equation on T*G associated with H reduces to the Lie-

Poisson equation
dp
dt

on G* with the reduced energy h : G* — R given by the restriction of H at the

:l:adahﬂ

identity element of the group G;

h(u) = H(id, ).
In other words, a left invariant hamiltonian on 7*G induces Lie-Poisson dynamics

on G* while a right invariant one induces Lie-Poisson dynamics on G} .

Proposition 3.10 The rigid body-fluid bracket given by

of . 59 5fT omT Om. g
{f,9}rr(g,m) = 8q 6q+ J-'Jm( Oz E)x)émd

is the sum of two Lie-Poisson brackets:

{fag}RF(qam) = {fag}R( )+{f)g}F(m)

_ [f g]>+< [f 59]L>
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where [-,] is the Lie bracket on so(3) 2R3, and [-,-]., is the Lie bracket on X,.

Proof: = We first show {f, g}z is the minus Lie-Poisson bracket on R3 inter-
preted as the dual of the Lie algebra so(3). By using elementary matrix and

vector manipulations, we get

5fT 6 ) )
(fobele) = “LaE = (Ex D)
= L«
dq  dq
of 6
= _<Q7[5~‘§'a£]>

In order to obtain the fluid bracket {f, g} in the Lie-Poisson form, we proceed

as

_rofT dmT  Om, &g

{frg}r(m) = 5m( Or E)x)dmd
_ of" 39
- /f (VX m)é——dx
of

- / (V> m)* (6m 5m)dx'

Now, we add the following zero term
of
/Mrm- (n x (—(SE X En—))ds

to {f,g}r. Note that, this integral is identically zero due to the parallelness of

3‘5‘% and 6%95 to the boundary 0F. Then, by using the equality
/a-(be)dx:/b-(an)dw-i— a-(n x b)ds
F F oF

we obtain

{f,9}r(m /m (V % ( « 29 —))dz.

This time, by using the vector identity

V x (axb)=~[a,bl; — (V-a)b+ (V- -b)a
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and divergence-freeness of —L and —9— we get

(rodelm) = — [m. 125 29,0
_ ﬁ ig_
B /.'Fm. [(5m’6m]de
= <m, [ﬁ _(Si

dm’ 6m]L >
by using the fact that the Lie bracket on A} is given by the negative of the

Jacobi-Lie bracket. o

The dynamics of rigid bodies containing fluids can be interpreted as Lie-Poisson
equations on the momentum space N' = T (s0(3) x Xy). To show this, first we

determine the co-adjoint maps of so(3) and Aj.

Lemma 3.3 Let G = s0(3) be equipped with the Lie bracket [f, g = fxg. Then,
the coadjoint map on so*(3)is given by adth = h x f.

Proof: Let f,g € s0(3) 2R3 and h € 50*(3) = RN3. Then,

< hyadgg > = <h,[f,g]>
= <hfxg>
= <h, fg>
= <fTh,g>
= <hxfg>

= <adth,g>
Therefore, adjh = h X f. [ |

Lemma 3.4 Let G = X, be equipped with the Lie bracket [f,g]L. =V x (f x g).

Then, the coadjoint map is given by

adih = (V x h) x f + Vs
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where Vs is the negative of the projection of (V x h) x f to gradient vector fields.
Proof: Letf,gc X; and h € X]. Then,
<h,adeg > = <h,|f,g]L>
= <h Vx(fxg)>
= <h Vx(fxg)>.
Then, by using the equality
/fa-(V xb)dx:/f(v xa)-bdx+/6fa~(n><b)ds
we get
< h,adg >= /f(v x h) - (£ x g)da:+/3fh- (n % (f x g))dz.

The last term on the right drops since f and g are parallel to the boundary 0F.

Then, we obtain
< h,adgg > = /(v x )T (£ x g)dz
= /(V x h)Tfgdz
= <fT(Vxh),g>.
Since g € X, we can add a gradient field Vs without breaking the equality
< h,adeg >=< fT(V x h) + Vs, g >=< adth,g > .
Therefore,
<fT(V xh)+ Vs —adth,g>= 0
and
adjh = fT7(V xh)+ Vs
= —fx(Vxh)+Vs

= (Vxh)xf+Vs.
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Remark: The coadjoint map we obtained agrees with the one given in [70].
Now, by using the co-adjoint maps, we can represent the dynamics of rigid

bodies containing ideal fluids as:

d=q¢XxXw=adgq

0
v x (V xm)—Vs=—adym
ot

Recalling that, w = 5—H V= gfl we get;

(q,m)tz(ad};_gq, G;d_gl m).

Note that, this equation is not a Lie-Poisson equation. However, if we change the
Lie algebra bracket on vector fields from [-,-], = —[-,-]s to [-,"]r = [-,"]s, then
we also have to change sign of the coadjoint map. With such a modification the
momentum space N can be interpreted as dual to the Lie algebra G = so(3) x X}

with the coadjoint map on G* = N given as:
a’d’(kw,v)(q7m) = (q X W,V X (V X m) - VS) eEN.

With this modification, rigid body-fluid dynamics acquire the structure of a

Lie-Poisson equation.

Proposition 3.11 The dynamics of a rigid body containing a perfect fluid (3.81),
(8.82) written in terms of the momentum variables (¢, m) are Lie-Poisson equa-

tions on G* = N associated with the reduced energy function h is given by

1 1 1
g/ & T7-1 = T It Ti*7—1
h(g,m) = 2‘1 Izlq—q' I3 lCm-|—2 f(me m)dz + 5/, m K*Ig"Kmdz.
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Proof: The co-adjoint action on N is given by
adf, vy (g, m) = (¢ X w,v x (V x m) — Vs).

Therefore, the Lie-Poisson equation on A associated with the energy h is deter-

mined by

(q7 m)t - ad:&z (qa m)

_M)
6q°%m
ox ot
1 dq’ 6m

X (V x m) — Vs)

We calculate the derivatives of h w.r.t. ¢ and m

oh _ -
6h m . r—1 .71 _
E_p}:‘ ’CIB q+ICIB IC(m)-v

Therefore, we obtain
(g,m); = (g X w,v x (V xm) — Vs)

which is the hybrid representation of the dynamics of rigid bodies containing

fluid and equivalent to (3.81), (3.82). ]

3.5.4 Euler-Poincare Structure

Euler-Poincare equations can be interpreted as dual to Lie-Poisson equations.
As opposed to Lie-Poisson equations, Euler-Poincare equations are defined on a
Lie algebra G rather than on the dual G*. Some references which we draw from

are [57], [58], [16].
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Definition 3.4 A dynamical equation is called an Euler-Poincare equation if it

can be written as
as_ .0l
dtoe " C6E

where £ € G, 1 : G — R and ad* is the coadjoint map on G*.

Euler-Poincare and Lie-Poisson equations characterize the very same dynamics.
Indeed, if we define u € G* by u = %, then an Euler-Poincare equation becomes
a Lie-Poisson equation. Furthermore, the following hybrid representation gives

both Lie-Poisson and Euler-Poincare equations in a single equation:

dp
dt

= adgpu.
This implies that, £ € G should be defined via equation & = % where h is given
by
h(p) =< i, & > = 1(§).
Note that this is nothing but a Lagrangian mechanics formulation restricted to

the algebra level. Euler-Poincare equations are related to particular Lagrangian

systems defined on TG. Let X and § be the tangent lifts of the left and right

translations of the group G;

P

TG —-GE@xg2TE

TG-GxG=2TG

=1

>

((9,vg)) = (9, TeLgvy)
p((9,vq)) = (9, TeRyv,)

where v, € T,G. Then, we give the following proposition from [57].
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Proposition 3.12 Lagrangian Lie-Poisson Reduction Let L : TG = G x

G — R be a left(respectively right) invariant Lagrangian on G, i.e.;

Then, the Euler-Lagrange equations on TG associated with the Lagrangian L

reduces to Fuler-Poincare equations

d él , 0l
agg = :badgg
on G where the reduced Lagrangian | : G — R is defined by restricting the

Lagrangian L at the unity element of G,

[(€) = L(id,¢).

This proposition which characterizes the Lagrange reduction on Lie groups with
full symmetry is dual to the Lie-Poisson reduction [56]. For other aspects of the

Lagrangian reduction we refer to [57], [58], [87].

Proposition 3.13 The dynamics of rigid bodies containing perfect fluids (3.79),
(3.80) are Euler-Poincare equations on G = so(3)x Xy associated with the reduced
lagrangian

1
Hw,v) = %wTITw +3 /prvTvdx + WwTK(prv).

Correctness of this proposition comes from that [ as given in the proposition
is nothing but h given in Proposition 3.11 written in terms of (w,v), and the
equivalence of (3.79), (3.80) and (3.81), (3.82) under the change of coordinates
given by 7. Here, we show that, [ as it is given in the above proposition can
be obtained from the Lagrangian L (3.19) of the rigid body-fluid system by

restricting it to the tangent space of M = SO(3) x ¥ at the unity element
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(Y,n) = (I,id). First, we state two lemmas which we will use as notational

tools.

Lemma 3.5

! T

o PN ) e

= < pK*(w),K*(w) >

= <w,K(pK'()) >

= <w, Iqw>=wTITw.

||
Lemma 3.6
/PFVTdex:wT/C(pFV)_
F
Proof:
/ prvTQzdz = / VT K (w)dz
F F
= <ppv,K'(w) >
= < K(prv),w >
= Ww'K(prv).
[ |
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Now, we recall that the Lagrangian L : T(SO(3) x ¥) — R of the rigid body-fluid

system which is given as

. ) 1 . )
L(Y,Y,n,n) = 3 /mx p((XNIYn+ Yni|PdX.

Remembering that Y =Y and 11 = v o1 we have

1

LY, Y,n0) =5

LPMIYQn +Y (v on)|PdX.
By setting Y = I and n = id we obtain
Laﬂidﬂzlf (X)X +v(X)|dX.

T 2 JB+F

Now, we change the variable of integration from X to x which accounts for

passing from the material to the spatial domain, and we get
LLRidv) = 3 [ @0 + V()P

— 2/ D)o x||2+/ prvT Qzdz

+—/ prvivdz.
2Jr

Then, by using the lemmas we stated above, we obtain
- 1 7 1 T T
L(I,Q,id,v) = ¥ Irw + 5/ prv vdz + w K(ppv) = l(w, V)
].'

Note that, all this analysis clearly points out that the reduction process which we
have carried out in section 2 of this chapter was indeed a Lagrangian reduction
albeit conducted in a “bare hands” fashion. We also note that, although the
Hamiltonian (Poisson) and the Lagrangian reduction are dual processes, for the
rigid body-fluid problem the Lagrangian approach was more natural since we

did not have the interpretation of the momentum variables beforehand.
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3.6 Rigid Bodies Containing Viscous Fluids

The model we studied up to this point assumes a perfect (incompressible, inviscid
and homogeneous) fluid filling the cavities of a rigid body. In the real world,
there is an important dissipative effect on the flow of fluids: viscosity. In this
section, we modify the equations of a rigid body containing perfect fluid to
incorporate the effect of viscosity into the dynamics. Indeed, this will be an easy
task, since we developed the model in a conservative framework by neglecting
any dissipative effects. Therefore, any non-conservative effect on the dynamics,
can be incorporated into the equations by adding these non-conservative forces
into the equations. The viscous friction is due to the friction between fluid
particles traveling with different velocities [21]. The forces created by this effect
are modelled by the Av where A is the Laplacian operator acting on vector
fields. Indeed, this is not an arbitrary choice. It is the natural result of assuming
a linear but otherwise arbitrary stress-strain relationship for the fluid material.
It is a basic result of continuum mechanics [59] that, the linear stress-strain
relationships involve only three parameters: p, u, v where p and v are called as
the first and the second viscosity coefficients and they are generally assumed
as fixed constants to model a homogeneous material. On the other hand, p is
treated as “gauge” to fix the conditions we like to impose on the flow such as
incompressibility and/or boundary conditions. So, p is assumed to be a scalar
field. Indeed, this scalar field is the pressure field appearing in the various
equations of fluid mechanics. In our model, the gradient field Vs plays a similar
role, and given Vs and the other dynamical variables we could calculate the

pressure gradient Vp and vice versa. In the case of incompressible viscous flows,
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the second viscosity coefficient does not appear in the viscous force. Let
dv
— = F(v,t

denotes the equations describing the dynamics of an incompressible, homoge-
neous fluid with a linear stress-strain relationship such that p = 0. Other than
the linear fluid with p = 0, we do not pose any restrictions. The fluid may be
under the effect of some external forces (conservative or non-conservative). As
long as they do not effect the linear constitutive relation of the fluid material
we summarize all such effects by parametrizing the right hand side of the above
dynamical equation by the time variable ¢. Then, if we take y # 0, we have to

modify the equations to:

dv
PF o = F(v,t) + pAv.

All these follow from the Newtonian interpretation of ‘fi—‘t’ as the acceleration

field of the fluid. As a result of these arguments, we will use the following
equations to describe the dynamics of rigid bodies containing incompressible,

viscous, homogeneous fluids:

%’j‘- = vx(Vxm)—Vs+ pAv (3.102)

where p is the second viscosity coefficient of the fluid. Furthermore, we impose
a boundary condition on v such that it should adhere to the boundary of the
cavity. Therefore, the field s should be chosen such that v vanishes at the
boundary. It can be shown that, the equation for the momentum field reduces

to the Navier-Stokes equation for incompressible fluids

pF(%% + (v-V)v)=—-Vp+ pAv (3.103)
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if we take w = w = 0. Conversly, (3.102) is nothing but Navier Stokes equation
in a rotating reference frame albeit expressed in terms of the momentum field
m instead of the velocity field v.

The viscosity changes the nature of the dynamical equations in a radical
way. As expected, the dynamics of rigid bodies containing viscous fluid is not
conservative. The first and foremost manifestation of this is the decreasing of

the energy. In order to show this we will need the following lemma.

Lemma 3.7 Let v be a smooth vector field on D C R which vanishes on the
boundary 0D. Then,

/V-Avda:_<_—)\/ v - vdz

D D

for some A > 0.

Proof: First, by making use of the vector identity [21]
V (v:Vv)=Vv:-Vv+v-Av

we get

/Dv - Avdz = —/D |Vv|*dz + /DV (v - Vv)dz.

From the divergence theorem and the fact that v vanishes on the boundary
0D, it follows that the second term on the right vanishes. Then, by using the

Poincare inequality
/ IVv|2dz > )\/ Iv|2dz, A >0
D D

we get

. = — 2dr < — 2dz.
/Dv Avdz /D||Vv|| dz < )\/DHVH dz
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Remark: The smallest A satisfying the inequality in the above lemma is the
negative of largest eigenvalue of the Laplacian operator. Recalling that A is a
negative operator, A is always positive.

Now, we calculate the energy H (3.85) along the solutions of the viscous model

(3.101), (3.102):

dq Fém

= qu—i—/ vim,dz
F

H =

= wi(gxw)+ /}_VT(V X (V x m) — Vs + pAv)dz
= ,u/ viAvdz < —)\u/ vivdz
F F
which is obtained by using the lemma, the orthogonality of the gradient and the

incompressible vector fields and the simple fact a”(b x a) = 0 for any a,b € R®.

Decreasing of the energy comes from the positiveness of A and u:
I < —xlv]? <o. (3.104)

Remark: The largest eigenvalue of the Laplacian operator is inversely propor-
tional to the size of the container F [44]. Hence, the energy of a viscous fluid
dissipates faster in small containers.

By using the fact that the energy H is non-negative we conclude that the

viscosity dissipates all the energy of the fluid w.r.t the rigid body;
lim [ vivdz = 0. (3.105)
t—00

Of course, this does not necessarily imply that all the energy of the rigid body-

fluid system goes to zero. Recall the total energy of the system:

_ 1 1
H(g,m) = H(w,v) = inITw + 3 /}_vaTvdx +WwTK(pFv). (3.106)
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Then, from the fact that K is a bounded operator, it yields that
. R
Jim H(q(t),m(t)) = tlg& Qv Irw. (3.107)

Note that, this shows that the motion of the rigid body-fluid system approaches
to the motion of the whole system as a rigid body. Indeed, we can show that
the rotation of the whole ensemble as a rigid body should be along one of the
principal axes of the total mass distribution Ir. We substitute v = 0 into (3.101)

and by using ¢ = Itw + K(prw) we get
ITLZ) = IT(.U X W. (3108)

We substitute v = 0 into (3.102), then by using m = ppv + ppK*(w) and the

fact that Vs = 0 provided v = 0 we obtain
wxzx=0 VrelkF. (3.109)

The second equation implies w = 0. Then by using the first equation we conclude
that the angular velocity of the rigid body containing incompressible viscous fluid
approaches to one of the eigenvectors of the total moment of inertia tensor Ir.
This result is known as the Zhukouvskiy’s theorem [65)].

Remark: In the infinite dimensional systems literature, finite dimensional man-
ifolds asymptotically attracting all solutions of the systems are known as iner-
tial manifolds. In the case of rigid bodies containing viscous fluids, the set
(w,v) = (we, 0) C s0(3) x Xy where w, is an eigenvector of Ir is a finite dimen-
sional subset of the phase space. A similar phenomenon is reported to be present
for some models of rigid bodies with dissipative elastic attachments [86]. The

underlying feature common to both problems is the dissipation.
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A remarkable fact is that the magnitude of total angular momentum ||q|| is

preserved despite the presence of viscosity:
d 2 __ 9 T. _ 9 T
el =2¢"¢=2¢" (¢ xw) =0 (3.110)

where we only used (3.101). Note that, we are able to show this very easily since
in terms of the momentum variables the form of the rigid body equation does

not change in the case of viscous fluids. Therefore, we have:

9@l = 1r(0) + K(pv(O)]
= Jim lFr(®) + K(pv(2)]

= Jim [IIw(®)].

From the definiteness of the inertia matrix I, we get the following: w goes to
zero iff the initial total angular momentum is zero. Also, the energy H (3.86)

goes to zero iff the initial total angular momentum of the system is zero, since
the total energy of the system asymptotically approach to energy of the rigid

rotation of the system.

3.6.1 Equilibria of the Dissipative Model

Let X, be the set of all equilibrium points of the dynamics of a rigid body con-
taining a viscous fluid (x4 # 0) expressed in terms of the velocity space variables.

Then,
Yo =21UXg

where Y; and X, are as defined before in section 4. To validate this claim, we

present the following arguments.
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As we have shown before, for rigid bodies containing viscous fluids ||v|| goes
to zero asymptotically in time. It is clear that if (w,, v.) is an equilibrium of the
rigid body-viscous fluid system, then ||v.|| = 0. Now, recall that the dynamical

equation ¢ = ¢ X w is equivalent to
Irw = Itw x w + K(prv) X w — K(ppvy). (3.111)

It is easy to see that, by using the boundedness of K, at an equilibrium (w,, ve)

this equation drops to the equality
0 = Izwe X we. (3.112)

This equality can be satisfied in two different ways. w, = 0 satisfies this equality,
and this solution is associated with the null solution (X;). Or, w, can be an
eigenvector of the total inertia matrix Iz, and such steady solutions characterize
the rigid rotations equilibria 5. Furthermore, by using the fact that the total
energy goes to zero iff the initial angular momentum of the total system is zero,

and that the energy H = 0 iff (w,v) = (0,0) = £;, we conclude:

lg@)l #0 = (w(t), v(t)) = X

lgOll =0 = (w(@),v(t)) =

It is easy to see that the null solution (¥;) is a stable equilibrium. This
can be shown by choosing the energy H (which is quadratic and positive) as
a Lyapunov function and by showing that it is non-increasing (which we have
shown already.) On the other hand, the investigation of the stability status of
the rigid rotations (£2) equilibria is not trivial at all. We study the stability of

rigid rotations in the next chapter both for the ideal and viscous fluid cases.
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Chapter 4

Stability and Control

In this chapter, we present some stability and control notions of relevance to
generic mechanical systems and study some stability and control problems re-
lated to the dynamics of a rigid body containing incompressible fluid. The struc-
ture of this chapter is as follows. The first three sections are expository in nature
presenting basic definitions and theorems. In section 4.1, we present several dif-
ferent notions of stability and give a stability theorem in a Banach space setting,
which is essentially a reformulation of V. Arnold’s convexity conditions which
guarantee nonlinear stability as opposed to formal stability in mechanical sys-
tems. Section 4.2 presents some stability methods which specifically exploit the
conservative nature of mechanical systems. In section 4.3, we formally develop
two control methods for Lagrangian systems by using energy and dissipation
concepts. The control methods given in this section are not novel approaches,
yet our presentation is not standard and emphasizes the generic aspects of the
frequently used control approaches in mechanical systems. The last four sections
of this chapter contain original results of our rescarch, and constitute some of

the main contributions of this dissertation. In section 4.4, we study hamiltonian
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systems with purely quadratic energy and casimir terms. By using the ratio of
energy and casimir as a Lyapunov function, we are able to obtain some new sta-
bility results about n-dimensional rigid body equation, Beltrami flows and rigid
bodies containing fluid. Section 4.5 addresses the stability of rigid rotations of
a rigid body containing incompressible fluid. Using the energy-casimir method-
ology we obtain sufficient conditions for stability of rigid rotations of a rigid
body-fluid system. We also study the effect of viscosity on stability. Sections
4.6 and 4.7 deal with velocity control and attitude control of a rigid body-fluid
system respectively. Both of these problems are posed and studied for the first
time in this dissertation. The velocity control problem, i.e. stabilization of rigid
rotations of a rigid body-fluid system is solved using the stability results ob-
tained in section 4.5. Being such, it can be interpreted as an application of the
stabilization by energy-casimir methodology. In the same vein, our solution to
the attitude control problem depends heavily upon the mechanical nature of the

system. Here, we developed a control law by shaping the energy of the system.

4.1 Stability Notions

In the context of mechanical systems, different but related notions of stability
are used. We present the following stability notions along the lines of [37].
Spectral Stability Consider a dynamical system 4 = F(u). Let u, be an
equilibrium point i.e., F(u,) = 0. Then, u, is said to be spectrally stable if
the spectrum of the linear operator DF(u) has no strictly positive real parts.
If an equilibrium point of a Hamiltonian system is spectrally stable, then the

associated spectrum should lie on the imaginary axis (neutral stability) since
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the spectrum of a Hamiltonian system is necessarily symmetric with respect to
the imaginary axis. Spectral stability does not imply much about the dynamics
of a system (not even boundedness of the perturbed solutions) other than the
obvious fact that absence of spectral stability implies instability.

Linear Stability Consider the linearization (du) = (DF)(uc)éu around u,.
If for any given ¢ > 0, we can find v > 0 such that || éu(0) ||< v implies
|| 6u(t) ||< € for ¢ > 0, then u, is called linearly stable. Linear stability implies
spectral stability, but the converse is not true. Any linear system which has no
eigenvalue on the open right half plane, but has repeating purely imaginary roots
in its minimal polynomial could serve as a counter-example. If the spectrum is
purely imaginary, then non-repeating eigenvalues implies linear stability.

Formal Stability An equilibrium wu, is called formally stable if there exists
a function which is constant along the solutions of & = F(u) and whose first
variation vanishes at u, while the second variation is definite. Although this is
a poor characterization of the Lyapunov stability criterion, the notion of formal
stability is widely used in the stability of infinite dimensional mechanical systems,
since it is necessary for nonlinear stability and implies linearized stability.

Nonlinear Stability This is the rigorous notion of Lyapunov stability. An
equilibrium u, is said to be nonlinearly stable (or just stable) if for any given
€ > 0, there exist v > 0 such that || u(0) — u, ||< -y implies || u(t) — ue ||< € for
t>0.

Due to the conservative nature of Hamiltonian systems neither spectral sta-
bility nor linear stability concepts can be used to determine exact stability results
for the conservative dynamics. However, they can be useful to find conditions of

instability.
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In finite dimensional dynamical systems, formal stability implies nonlinear
stability. But this is no longer true for infinite dimensional systems. In order to
resolve the difference between formal stability and nonlinear stability as well as
to clarify the nuances between finite and infinite dimensional cases, we state the
following theorem which is essentially a reformulation of the convexity conditions

of Arnold for nonlinear stability [37].

Theorem 4.1 Consider the dynamical system described by the vector field 2 =
F(z), 2 € M where M is a Banach space with norm || - || and F : M — M. Let
ze be an equilibrium point, F(z,) = 0, and O be an open set around z,. Then
2, 18 (nonlinearly) stable with respect to norm || - ||, provided there exists a twice

Frechet differentiable function L : O — R satisfying:
1. DL(2,)6z =0
2. c1]|02* > D?L(z.) (02, 62) > col|62]|?
3. 4 <0

for some ¢y,¢0 8.t. 00 > ¢y > o > 0 and for any 6z € M.

Proof: Since L is twice Frechet differentiable, we can expand L as:

L(2) = L(z.) + DL(z)5z + %DQL(ze)(dz, 52) +o(|622).  (41)
By using the first condition (DL(z.)dz = 0), we get:
SDPL(2)(62,62) = L(2) ~ L(z) - o([162]1). (4.

By using the second condition, we can write:

261 0211° 2 L(z) — L(z.) - o(ll62]?) = 2eal|62]> (4.3)
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Now, we choose an ¢ such that 2c; > ¢ > 0 and
l|62]* > o([162]1%) = —elld=” (44)
for sufficiently small ||dz||. Then, we get the inequality:
(2¢; + €)||62]|* > L(2) — L(2) > (2c2 — €)]|62]|°. (4.5)

By identifying 6z(t) = z(t) — z, and calculating the above inequality at ¢ = 0
we get:

(2c1 + €)[102(0)|* > L(2(0)) — L(ze). (4.6)

From the third condition on L we have:
L(2(0)) = L(ze) > L(2(t)) — L(z) (4.7)
and finally using (4.5) again we obtain
L(2(t)) — L(z) 2 (2c2 = )| 62(2)]I". (4.8)

Therefore, by combining (4.6),(4.7) and (4.8) we obtain

(22 — €)[I62(1)|* < (2¢1 + €)[102(0) | (4.9)
and
2c1 +¢€
6=l < 22 5=(0)2 (4.10)
2 €
This establishes the stability of z, with respect to norm || - ||. Furthermore, if

the inequality used in the choice of e is satisfied for ||0z||*> < €1, then the domain

of validity for the bound on the perturbations is assured for

261+6
2¢y — €

16201 < e )7L
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Remark: This theorem is just a restatement of the well-known characterization
of Lyapunov stability: the existence of a non-increasing function which has a
strict relative minimum at an equilibrium point is sufficient for stability. It is
important to note that DL and D?L are not just the first and second variations
respectively, they should be the Frechet derivatives. Otherwise, the axioms of
the theorem do not guarantee that L assumes a strict relative minimum at z, ,
hence no conclusion about the stability can be drawn. We illustrate this point

by an example which we adopted from [2]. Consider a dynamical system
u; = F(u) (4.11)

where u € L2([0, 1]) and u, = 0 is an equilibrium point. We further assume that
the functional
1
Bw) = / w(z) — u(z)do (4.12)
0
is non-increasing along the solutions of the system. The first and the second

variations of ¢ calculated at u, = 0 are given by
D¢(0) =0 (4.13)

D9(0)(v,0) = | ' 02(2)da. (4.14)

It is clear that the first variation vanishes and the second variation is positive
definite. One may be tempted to think that these imply the stability of u, = 0.
Indeed, this need not be the case since ¢ can take negative values even if u is

arbitrarily close to ue = 0. Let € € (0,1), we define u, as:

2 z , €
ue(a) = € [0,¢]
0 z € (el
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We calculate ¢ at u = u,

d(u) = —;—/064dx—%/0616d:c

_ e 16
2 2
= —6¢ <0.

Obviously, u. can take negative values for arbitrarily small ||u|| hence u, = 0 is
not a minimum of ¢ and we cannot conclude anything about the stability from
this analysis. A simple calculation might reveal that D?¢ as given above is only
the second variation of ¢ , not the second Frechet derivative. Therefore, the
notion of formal stability is meaningful only if the variations are taken in the
Frechet sense. In finite dimensional spaces, any multilinear function is continu-
ous, therefore n-th variation is also the n-th Frechet derivative provided it is a
multilinear function.

Remark: It is useful to recall that the notion of stability depends upon a given
norm. On a finite dimensional space, any norm is equivalent to any other norm
defined on the same space. This is no longer true in the realm of infinite di-
mensional spaces. Therefore, it is possible that an equilibrium of an infinite
dimensional system might be stable w.r.t. one norm yet unstable w.r.t another
norm. We also note that if an equilibrium is stable w.r.t. a norm, then it is
stable w.r.t. any equivalent norm. In infinite dimensional systems, it is essential
to mention in which norm a stability result holds.

Remark: The first two hypotheses of theorem 4.1 only assure that L assumes
a strict relative minimum at the equilibrium point w,. This does not imply any
restrictions on the dynamics. The stability follows from the non-increasing na-

ture (L < 0) of the Lyapunov function L along the solutions of the system. It is
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clear that we presume the existence of L, i.e. existence of C! solutions. As long
as such solutions exist the theorem gives sufficient conditions for their stability.
Remark: This theorem is valid not only for dynamics defined on Banach spaces
but also for dynamics defined on Banach manifolds, since essentially Lyapunov
stability is a local property of a vector field. The content of the theorem is essen-
tially identical to Arnold’s convexity conditions for proving nonlinear stability

[37).

4.2 Stability Methods for Mechanical Systems

The stability theorem 4.1 can be used to determine stability results for a wide
class of dynamical system. However in the case of mechanical systems, the con-
servative nature of the dynamics help us to find Lyapunov function candidates
more easily. Here, we give two well-known and useful stability tests for mechan-

ical systems. We consider mechanical systems written in the form
z=W(z)dH(z) (4.15)

where W is a Poisson structure and H is the Hamiltonian. We remind that this
is the most general formulation of the conservative mechanical systems. After
appropriate transformations, Lagrangian and Symplectic systems can be cast in
this form.

First, we consider the stability of an equilibrium point z, which corresponds
to a critical point of the Hamiltonian H. For such equilibria, the following well-
known criterion provides a simple yet effective test for stability.
Lagrange-Dirichlet Criterion Let z, be a critical point of the Hamiltonian

H i.e. dH(z) =0. Then z, is a stable equilibrium point of (4.15), provided the
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second derivative D?H of the Hamiltonian calculated at z, is either a positive
or negative definite operator.

Since the first variation DH vanishes at the equilibrium 2z, and the second
variation D?H(z.) is positive (or negative) definite, we can use H (or —H)
as a Lyapunov function. The stability follows from the conservation of the
Hamiltonian H along the solutions of (4.15).

Some mechanical systems can be written in the form (4.15) where z = (z, p,)
lies in the tangent bundle 7*M of a Riemannian manifold M and W is the

canonical Poisson structure on the cotangent bundle with the Hamiltonian

1
H(z,p;) = 3 L Py, Pz > +V (). (4.16)

For such sytems the only possible equilibria are of the form (z,p;) = (z,0)
where z, is a critical point of the potential energy V. Such an equilibrium point
is stable if z, is a strict mimimum of V.

The application of the Lagrange-Dirichlet criterion is limited to the equilibria
on which the Hamiltonian H assumes an extremal value. However, there are
interesting and important dynamical problems in which an equilibrium z, is
not associated with a critical point of H. Such a situation is only possible if
the Poisson structure W has a non-empty kernel. Assume W(z.)dH(z,) = 0,
dH(z.) # 0. For such equilibria the Hamiltonian itself cannot be used as a
Lyapunov function but a combination of the Hamiltonian and Casimirs can be
used to assess stability. Let C' be a Casimir, i.e., W(z.)dC(z.) = 0 and let ¢ be
a smooth function. Then, the following method can be used to test for stability
of z,.

Energy-Casimir Method Choose a smooth function ¢ such that the first

derivative of H + ¢(C) vanishes at the equilibrium point z.. Then, 2z, is stable
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provided the second derivative D*(H+¢(C)) is either positive or negative definite
operator.

The energy-casimir method was introduced by Arnold [7] for the stability
of stationary flows of ideal fluids. Later applications of this method include
[37] (various fluid and plasma problems), [43], [71] (rigid bodies with flexible
appendages), [14] (rigid bodies with internal rotors).

Here, we would like to emphasize that the first and second derivatives in
both the Lagrange-Dirichlet and energy-casimir methods should be taken in the
Frechet sense. If they are not Frechet derivatives but weaker kinds of derivatives,
then only formal stability can be assessed by these methods.

There exist mechanical systems where there is no Casimir functions, but
only some constants of motion associated with the symmetries of the mechanical
system. In such cases, the energy-momentum method is relevant and it can be
applied to test the stability of the relative equilibria. See [74], [75] for a detailed

treatment of this method and some of its applications.

4.3 Control of Mechanical Systems

In this section, we formally develop two control methods for asymptotic stabi-
lization of mechanical systems represented in Lagrangian form. We do that to
emphasize the role of the energy dissipation in stabilization of mechanical sys-
tems. Our derivations are formal to simplify the exposition, but with suitable
hypotheses they can be cast in rigorous form. The methods we introduce are

not novel; in one form or another they can be found in the literature.
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4.3.1 Static Dissipative Controllers

We consider a Hilbert space Z which we will take as the configuration space of
a Lagrangian system. For z € Z, the objects in the tangent space at z, which
we identify with Z itself, will be denoted by 2; and be interpreted as “velocity”
of a mechanical system. The most general quadratic Lagrangian on the tangent

bundle TZ = Z x Z can be written as:
1 ~ 1
L(z,z) = 3 <z, Azg > + < 2, Bz > ~3 <zCz> (4.17)

where A, B, C are linear operators on Z. Because of the way they enter into
the Lagrangian, we could take A and C as symmetric operators without losing

generality. The associated Euler-Lagrange equation is given by

where B = B—B*. Note that B will be an anti-symmetric operator. We consider

the functional

1 1
H(z,z) = 3 <z, Azg > +§ <zCz>. (4.19)

We note that, H as given above is not the Hamiltonian of the system which
is related to the Lagrangian L via the Legendre transformation. Indeed, H is
the Hamiltonian of the system w.r.t. a non-canonical Poisson structure which
involves the gyroscopic term B. We calculate H along the solutions of the La-

grangian system (4.18):

. 1 1 1 1
H = 5 < Ztt,.AZt > +§ < Zt,AZtt > +§ < Zt,CZ > +'2— <zCzs >

1 1 1 1
= 3 < Azy,z > +§ <z, Azy > +—2— < z,Cz> +§ <Czz >

= < Zt,AZtt >4 < zt,Cz >

111



= < Zt,.AZtt +Cz >

= <z,—Bz>=0

where we used the symmetry of .4 and C in passing from the first line to the
second, and the anti-symmetry of B in the last line. Note that H is a conserved
quantity of the Lagrangian system (4.18). Furthermore, if A and C are positive
operators, then the functional H qualifies as a Lyapunov function candidate and
the constancy of H implies the stability of the null solution (z = 0,2; = 0) of
(4.18). In most physical models such as wave equations, beam equations, plate
equations etc., the operator A is positive. Hence, in most Lagrangian models
stability depends upon the positivity of the operator C which is related to the
potential forces acting on the system. The Lagrange-Dirichlet principle captures
this as: an equilibrium of a (Lagrangian) mechanical system is stable provided
the potential field assumes a minimum at the equilibrium. Indeed, this principle
can be extended to mechanical systems which are not necessarily in Lagrangian
form by suitably interpreting the potential term on a reduced space [15].

The stability analysis given above immediately suggests a stabilization method

for Lagrangian systems. We will consider the forced Lagrangian system
Azy + Bz + Cz = D*u (4.20)

y=Dz (4.21)

where u € U is the control and y € Y is the observation. We assume A is
symmetric and positive, B is anti-symmetric and C is symmetric. Here, we also
assume that the control space U and the observation space Y can be modeled
as Hilbert spaces. The observation operator D is a linear map from Z to Y,

similarly the control input operator D* is a linear map from U to Z. This
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implies that U and Y are dual spaces. In applications, this input-output model
is associated with co-located sensors and actuators. We note that under this
specific control-observation structure the “transfer function” operator from wu to
y is given by

G(s) = D(As* + Bs + C)~'D*. (4.22)

It is easy to check that G(s) satisfies the equality
G(s) = G*(—s). (4.23)

We call such transfer functions Hamiltonian.

We will consider linear controls of the form
u=—-Ny— My, (4.24)

where N, M : Y — U are linear operators. Substitution of (4.24) into (4.20)

yields the closed loop equation:

Az + (B +D*MD)z + (C + D*ND)z =0. (4.25)
We take
H(z,2) = % < z, Az > +% <z (C+DND)z > (4.26)

as a Lyapunov function candidate. Note that, this requires
<z,(C+D'ND)z2>> 0 VzeZ. (4.27)
The time rate of change of H is given by:
H=— < 2,D*MDz >= — < Dz, MDz, > . (4.28)
We observe that if M is a positive operator then H is non-increasing and

z — ker(D) (4.29)
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as time tends to infinity. Therefore, (z, z;) asymptotically approaches an invari-
ant set in the subspace z; € ker(D). If ker D = {0}, then z; — 0 and by inserting
z; = 0 into (4.25), we get

(C + D*N'D)z = 0. (4.30)

Recalling condition (4.27), we obtain z = 0. Therefore, by choosing M as a
positive operator, and by chosing A such that it satisfies the condition (4.27),
the asymptotic stability of the null solution is assured provided ker(D) = {0}.
For a finite dimensional model, this condition on the kernel means we have
to have as many controls as the degrees of freedom of the mechanical system.
Therefore, ker D = {0} is a very restrictive condition. We find a less restrictive
sufficient condition for the asymptotic stabilization of the null solution which
does not require ker D = {0}. As we have shown above, positivity of M and the
inequality (4.27) are sufficient for z; — ker(D). In this subspace, the closed loop

system (4.25) reduces to
.AZtt + BZt + (C + D*ND)Z =0 (431)

y = Dz. (4.32)

Therefore, the zero state observability of this system is sufficient for the asymp-
totic stability of the null solution (z = 0, z; = 0) provided (4.27) holds for some
N. We note that a necessary condition for (4.27) to hold is that C restricted
to the subspace z; € ker D be positive. Also note that, if C is a positive op-
erator then (4.27) is satisfied for N = 0, and for any positive operator M the
control u = — My achieves the asymptotical stabilization provided the original
Lagrangian system (4.20) is zero state observable. If C is not a positive operator,

asymptotic stabilization depends upon whether we could shape the potential of
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the Lagrangian system while keeping the system observable from the output
y = Dz.

Remark: A similar method for the stabilization of mechanical systems is pro-
posed by Van der Schaft [26] where the problem is studied in a Hamiltonian
setting as opposed to a Lagrangian one. Furthermore, [26] considers finite di-
mensional but nonlinear mechanical systems, yet the essential strategy is the
same: if the potential energy assumes a minimum at the equilibrium then adding
dissipation to the system is enough for stabilization provided the system is ob-
servable. If the equilibrium is not associated with a minimum of the potential
energy, then we first try to shape the potential by using the controls, then add
dissipation.

Example: Control of an Euler-Bernoulli Beam We consider an Euler-

Bernoulli beam clamped at its ends z =0 and z =1

2w Nw 0%u
Poe VP50 = 52
_ P
vy= ox2

where p and ET are some constants of the beam. Here, z € [0,1] and we will
assume the deflection of the beam w, the control input u, and the observation
signal y lie in L2(0, 1]. Note that we only observe the “curvature” along the beam,
and dually we are only allowed to manipulate the curvature. This is a natural
model for sensing and actuation through “smart materials.” We will assume the

natural boundary conditions associated with the clamped ends:
w(0,t) =w(1,t) =0

wz(0,1) = wx(1,t) = 0.
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First, we observe that in order to study this system in our framework the natural

candidates are
A=pT, B=0,C=FEl0;;, D= 0y

Since the output is given as y = w;, = Dw, we should show that D is a symmetric

operator in order to show that the system fits into our framework.
Lemma 4.1 D = 0,, is symmetric and negative.

Proof: By using integration by parts, we have

1
<a,Db> = /abmdx
0

1
= abg |} —/ a,bdz.
0
Recalling the boundary conditions b,(0,t) = b,(1,t) = 0, we get

1 1
<a,Db> = —/0 agbydzr = —/0 byazdz
1
= / bay, =< b,Da >
0

= < Da,b>.
This establishes the symmetry of D. Furthermore, we have
1 1
< a,Da>= —/ ay0,d% = —/ a2dx <0
0 0

which shows the non-positivity of D. From the boundary conditions, we get

az = 0 iff a = 0. Therefore, < a,Da >= 0 iff a = 0. Hence, D is negative. [

Lemma 4.2 C = El0,,., is symmetric and positive.

Proof: This follows from ET > 0, symmetry of D, ker(D) = 0 and C = EID?.
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Note that since C = EI8;;4; > 0, (4.27) is trivially satisfied for N = 0. So
it is sufficient to choose N'= 0 and M > 0 for stabilization of the null solution.
For simplicity, we choose M = aZ for some o > 0. Our framework suggests
that the control

u=-My; — Ny =—ay; = —Qwsza (4.33)

stabilizes the vibrations of the clamped beam. The closed loop equation under
this control input is given by

Pw Pw tw
P + v + E16$4 =0. (4.34)

We observe that the closed loop equation is the equation of motion for a beam
with viscous (Kelvin-Voigt) damping. It is known that this equation generates

a semigroup in a suitably defined Hilbert space [19].

4.3.2 Dynamic Dissipative Controllers

The controllers we proposed for Lagrangian systems in the previous section are
static dissipative controllers. Being such they can be thought of as having an
infinite bandwidth. Here, we will develop dynamic dissipative controllers which

do not have this problem. We consider forced Lagrangian systems of the form:
Azy + Bz +Cz = —D*u (4.35)

y =Dz (4.36)

where A = A* > 0, B= —B* and C = C* > 0 are linear operators on a Hilbert

space Z. We consider a linear dynamic output controller

I

Pz + Ry (4.37)

Tt

H

u Sz + Ty (4.38)
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where z € X. Here, X is the state space of the controller which we assume
to have a Hilbert space structure. The controller is determined by the linear
operators:

P:X—>X , R:Y—>X (4.39)

S: XU , T: YU (4.40)
Under the proposed controller (4.37), the closed loop equation becomes

Aztt + BZt +Cz = -D*Sz — D*TDZ,; (441)

T

We investigate the stability of the null solution (2 = 0,2 = 0,z = 0) of the

closed loop system via the Lyapunov function candidate

1 1 1
V(z,2t,2) = 3 <z, Az > +§ <zCz> +§ <z, Mz > (4.43)

where we choose M : X — X as a symmetric positive operator. We calculate 1%

along the solutions of (4.41), (4.42):

V = <Azy,ze>+<Cz 2>+ <z, Mx; >
= <Az +Cz,2 >+ <z, M(Pz +RDz) >
= < —Bz —D*Sx —D*TDz, 2 >

-i-l <z,(PPM+MP)z >+ <z, MRDz >

2
1
= — <TDz,Dz > +5 <1, (P*M + MP)z >
+ < (R*M — 8)117,th >
where we used the symmetry of operators A, C, M and the anti-symmetry of B.

We assume that the controller parameters P, R, S, 7T satisfy the equalities

<z,(PM+MP)z>= —< Lzx,Lz>—<1x,Q1> (4.44)
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<y,8z>=< Ry, Mz >+ < Wy, Lz > (4.45)
<Wy,Wy>=<y,Ty>+<Ty,y> (4.46)

for Vr € X, Vy € Y, and for some linear operators £,Q : X - X ,W:Y —
X where Q is symmetric positive. If the controller parameters satisfy these

equalities, then one can show that

. 1 1 1
V = -3 < Lz,Lx > —3 < Lx, WDz > —3 < WDz, Lz >
1 1
—5 < WDz, WDz > —:?’- <z, Qr>
1 1 1
= —§||£x||2— < Lz,WDz > —§||Wth||2 -5 <%, Qz >

1 1
= —§||[,a:+Wth||2 -3 <z,0r> <0

Note that since V > 0 and @ is positive, the result above implies that the

solutions of (4.41), (4.42) approach to an invariant set in the subspace
z=0, WDz =0. (4.47)

By using (4.46), it can be shown that the closed loop dynamics (4.41), (4.42)
reduces to

AZtt + BZt + Cz=0 (448)
RDz =0 (4.49)

on the subspace specified above. Note that (4.49) implies (2 = 0,2, = 0) iff
(4.48) (which is nothing but the uncontrolled Lagrangian system) is zero state
observable from the modified read-out map y = RDz;. Therefore, we give the
following design procedure for the stabilization of (4.35), (4.36).

Assumption: The Lagrangian system (4.35), (4.36) is zero-state observable.

Design Parameters: Choose a Hilbert space X and a linear operator R : Y —
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X such that the Lagrangian system is zero-state observable from the read-out

map y = RDz;. Choose linear operators
L: XX W:Y=>X,0: XX
s.t. Q is symmetric and positive. Determine linear operators
P X->X,8: XY, T: YU

s.t. (4.44), (4.45), (4.46) are satisfied for some symmetric positive operator M
on X.
Controller: The operators (P,R,S,T) define a controller (4.37) which asymp-
totically stabilizes the null solution of the closed loop Lagrangian system (4.41),
(4.42).

Now a few words about the structure of the controller are in order. The
equations (4.44), (4.45), (4.46), which we assumed to be satisfied by the con-
troller parameters are nothing but a straight forward generalization of the state
space conditions for strict positive realness of finite dimensional linear transfer
functions. If the output space Y and the controller state space X are finite di-
mensional, then these conditions characterize finite dimensional strictly positive
real transfer functions [6], [60]. It is remarkable that since these conditions on
the controller do not involve any parameter of the Lagrangian system, asymp-
totic stabilization can be achieved by any strictly passive controller provided the
observability condition holds. Even if the observability condition does not hold,
there is no Lagrangian system with A > 0, C > 0 which could be destabilized
by the dissipative controllers defined above. This is a remarkable degree of ro-
bustness with respect to the uncertainity of both the Lagrangian model and the

controller. We also note that, if the original Lagrangian system (4.35), (4.36)
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is observable from the read-out Dz;, then we could always choose R such that
it is also observable from y = RDz by taking X = Y and R as the identity
map. In particular, if the Lagrangian system is observable from a finite number
of outputs, then it can be asymptotically stabilized by any finite dimensional
strictly passive controller.

Remark: The observability condition, which is necessary to apply this frame-
work to a specific problem is an essential one. For any output control scheme
applied to state-space models, similar assumptions are inevitable. Such assump-
tions for the stabilization of mechanical system also appear in [26], [76].
Remark: The stabilization of a wave equation by using a passive controller has
been studied in [66]. We are inspired by this work and we generalized this idea
to generic Lagrangian models. A similar framework has been proposed also in
[39] in the context of finite dimensional models for large flexible space structure
control.

We close this section by applying the dissipative controller concept to a wave
equation.

Example: Control of a Wave Equation We consider a wave equation under

the control of the scalar input u(t) € R

ow O*w

where z € [0, 1], a € L?[0,1] and w = w(z,t). We investigate the wave equation

with boundary conditions
w(0,t) =0, w(l,t) =0.

First, we observe that this wave equation conforms to our Lagrangian control
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formalism with

A=T,B=0,C=-08,, D" =a(z).

Obviously, A = A* and B = —B*. Furthermore, C is symmetric and positive. In
order to design a passive controller, first we have to find a read-out map which

is dual to the input map D* = a.
Lemma 4.3 Let a,w € L?[0,1] and D : L?[0,1] = R be defined by
1
Dw = / a(z)w(z)dz.
0
Then, the adjoint operator D* : R — L?(0,1] is given by
D*u = a(z)u.
Proof: Let w € L?[0,1] and u € R, then
1
< Dw,u> = / a(z)w(z)dzu
0

= /01 w(z)a(z)udz

= <w,D'u>.

Therefore, in our framework the controller input will be the scalar read-out signal
given by
y(t) = /01 a(z)wi(z, t)dz.
One can show that [24], the wave equation (4.50) is zero-state observable from
the output y provided
| ' (@) fa()dz # 0 (4.51)
for n =1,2,3,... where f, is a complete orthogonal basis for L2[0, 1]. Therefore,

in order to continue with the design procedure, we will assume that the function
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a satisfies this condition. Indeed, it is easy to find such functions which account
for the distributed effect of the actuator. For example, let {a,} € 12, and a,, # 0,
n =1,2,3,..., then the function a(z) = 3, a,fn(z) satisfies (4.51). Now, assum-
ing a is chosen such that the observability condition holds, we choose a finite
dimensional state space for the controller, i.e., X = RF for a fixed k. Then, for
any non-zero vector r € R*, the Lagrangian system is observable from § = ry
since it is observable from the output y. Since the input space U = R, output
space Y = R and the controller state space X = R* are finite dimensional,
the conditions given by (4.44), (4.45), (4.46) are satisfied by any k£ dimensional
strictly positive transfer function. And, any linear SISO controller u = Gy where
G is a strictly positive transfer function stabilizes the null solution of the wave
equation.

Remark: There exist scalar fields on [0, 1] which vanish outside of an arbitrarily
small interval, yet satisfy the observability condition (4.51). This implies that
the passive controller strategies might work even when only point measurements
and point actuations are allowed. Such an example, which incorporates a passive
controller in a boundary control problem has been studied in [66].

Remark: Both the static and the dynamic dissipative controllers we introduced
in this section are especially tailored for the control of mechanical systems. As
opposed to the application of generic control methods (such as infinite dimen-
sional versions of LQ and H* control theories) to mechanical control problems,
these passive controllers show a greater degree of robustness. As it is implied
from our analysis, the passive controllers are almost universal for the stabiliza-
tion of Lagrangian systems. This is not surprising since a passive controller is

nothing but a dynamic mechanism for imitating dissipation.
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4.4 A Modified Energy-Casimir Method

We consider Hamiltonian systems 2 = W (z)dH where W is a Poisson structure
and z lies in a Hilbert space Z. We further assume that the system has purely

quadratic Hamiltonian H and a purely quadratic casimir C. Therefore, we have

H(z) = l<z,’;‘-lz>

2
C(z) = % <z,Cz>
0 = W(z)dC.

for some symmetric linear operators ‘H and C. Although this is a limited frame-
work, some interesting mechanical systems such as rigid body dynamics, perfect
fluid flow and rigid bodies containing perfect fluids can be cast in this form. It
is easy to see that H and C are constant along the solutions of the Hamiltonian
system:
H=<dH:>=<dHWdH>= 0
and
C = <dC,:>=<dC,WdH >
= <W*C,dH >= — < WdC,dH >

= 0.

We note that the conservation of H and C only depends upon the skew-symmetry
of the Poisson tensor W. We also note that z, is an equilibrium point of the
Hamiltonian system iff dH (z.) lies the kernel of W (z,). If C is a casimir function,
then dC(z,) lies in the same kernel too. Therefore, some (but not all) equilibrium

points are characterized by the parallelness of dH and dC"

adH(z,) =dC(z,) , a € R. (4.52)
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The energy and casimir terms are quadratic, hence the generalized eigenvalue-
eigenvector equation

(aH - C)z, =0 (4.53)
characterizes a particular class of equilibria which we want to study for stability.

We investigate the plausibility of functions of the form

L(z) = g((j)) :

(4.54)

as Lyapunov function candidates in order to determine the stability of equilibria
characterized by (4.53). We will assume H(z,) > 0 and C(z,) # 0. Note that,
this implies we are interested in some non-zero equilibria. In order to use L
as a Lyapunov function, its first variation DL should vanish at the equilibrium
z. and the second variation D2L should be definite. If D%L is positive, then it
could be used as a Lyapunov function since L = H/C is constant of motion. If
D?L is negative, then we could use L=-H /C as a Lyapunov function to show

stability. The first and second variations of L are given by

DH-C-DC-H
DL = o2 (4.55)
and
2. O — D2(C . . _ . 2
D2L=(DH C - DC H+é)’4H DC - DC-DH)C (4.56)
(DH-C - DC-H)2DC
_ i )

We are particularly interested in with the equilibria at which dH || dC. At any
such equilibrium, DL vanishes automatically and the second variation reduces

to
D?H.C-D*C-H

2
DL = =
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If the energy and casimir are given by H(z) = ; < z,Hz > and C(z) = % <
z,Cz > respectively, then (4.55) and (4.56) are equivalent to
aC(ze)DL(z,) = (aH —C)z (4.57)
aC(z.)D*L(z,) = (aH —C) (4.58)

where o = C(z.)/H(z.). Note that, since C(z.) # 0 and H(z,) > 0, DL(z,)
vanishes iff (aH — C)z, = 0. Similarly, the definiteness status of D2L(z,) is
identical to that of the operator (o —C). We also observe that D2L(z,) cannot
be definite if DL(z.) = 0 since this contradicts with z, € ker (o’ — C). On the
other hand, (a’H — C) can be definite on the subspace perpendicular to z, which
we denote by z;-. Let (o — C),. denote the operator (e — C) restricted to
the subspace z;-. Suppose, (aH — C),s+ is a positive operator. Then, L = H/C

becomes a valid Lyapunov function candidate on the invariant set
1
{z€eZ | C(z) = 5 < z,Cz >}.
Therefore,

(@H—C)ze = 0 (4.59)

(@H—C), > O (4.60)

imply the stability of equilibrium z, with respect to perturbations in the casimir
leaf passing through z.. To determine the stability w.r.t arbitrary perturbations,
first we observe that the equilibria characterized by equation (oH — C)z. = 0 is
a continuum in the form of a linear space. Particularly, if z, is an equilibrium
so is (1 &+ €)z, for small e. Similarly, if (4.59), (4.60) are satisfied for z, then
they are satisfied for the equilibrium (1 + €)z, too. Therefore, (4.59), (4.60) are

sufficient for the stability of 2, not only w.r.t. perturbations in the casimir leaf
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but w.r.t. any perturbation. If (&’H —C) 2+ 1s a negative operator, then the same
arguments are valid if we choose L = —H/C as the Lyapunov function. This
test is not conclusive if (aH — C),1 is not a definite operator. However, there
is a class of dissipative systems which can be obtained from the Hamiltonian
systems by adding a very particular dissipative field, for which this stability test
is conclusive even if the second variation (aH — C),. is not definite. Consider

the perturbed Hamiltonian system
z2=W(z)dH — YyW*(2)W (2)dH

where v > 0 is a real number. It is not very difficult to check that along the solu-
tions of this perturbed system the energy H decreases but casimirs are preserved.
Furthermore, under this kind of perturbations the equilibria remain intact. For a
detailed study of this class of dissipative systems where z lies in a Lie algebra and
W is a Lie-Poisson structure, see [16]. Also see [77], [78] for casimir preserving
dissipative perturbation for the perfect fluid flow. If (o’ —C),1 is positive then,
the stability of z, is not lost under casimir preserving dissipations since we get
L < 0. On the other hand if (oM — C).. is negative , then a stable equilibrium
turns into an unstable one since C' = 0, H < 0 imply that L=-10 > 0. And,
instability follows from Cetaev’s theorem.

Remark: This stability test given by (4.59), (4.60) is similar to the energy-
casimir stability method, with the exception that here we calculate the definite-
ness of the second variation not on the full space but on an invariant casimir
leaf. Due to the specific choice of the Lyapunov function, the definiteness could
be checked via an eigenvalue-eigenvector problem for systems having quadratic
energy and casimir terms. Of course, Lyapunov function candidates of the form

H/C can be tried for any Hamiltonian system; but then there will be no guaran-
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In order to determine suitable sufficient conditions for stability of the rigid ro-
tations, we will proceed as follows. We consider functions of the following form

as Lyapunov function candidates:

L(g,m) = H(g,m) + 6(3 o).

Here, H is the energy of the system as given by (4.71), ||q|| is the magnitude of
the total angular momentum of the rigid body-fluid system, and ¢ is a smooth
function. The function L, which we will use as a Lyapunov function in the
sequel, will be preserved along solutions of (4.67), (4.68) since both the energy
and the angular momentum are constants of motion. Recall that, ||g||? is a
casimir of the Hamiltonian system, therefore our approach could be interpreted
as an energy-casimir approach to stability. Note that, we only assumed ¢ is a
smooth function. In the following, we put further restrictions on ¢ such that the
first variation DL of the function L vanishes at the equilibria corresponding to
rigid rotations, while the second variation D2L is a positive operator. Indeed,
we will seek conditions which make D?L not only a positive but also a bounded
operator with bounded inverse. The conditions we will impose on L will make L
a Lyapunov function candidate, and the constancy of L along the solutions will
prove the stability of rigid rotations under the imposed conditions. Note that,
the only free parameter in L is the smooth function ¢. Conditions imposed on
L will be formulated as restrictions on the function ¢ as well as some conditions
which should be satisfied by the system parameters. The conditions on the
system parameters will determine sufficient conditions for the stability of a rigid
rotation equilibrium.

First Variation The first variation condition DL(g., m.)[(dg,dm)] = 0 is
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satisfied provided:
SL_, OL_
b¢ ' dm

These variations, taken with respect to the norm characterized ed by ||(g, m)||? =

0.

q'q + [ mTmdz can be given as

5L 6H 69 ., ., .
¢ = oq T 5g =59~ s Klm)+ ¢ (5lalNg (4.72)
5L 6H _d¢ m . .

fm 5m+5m_pF+KIB K(m) — K*I5'q. (4.73)

Calculating these variations at an arbitrary equilibrium (g, m,.), and equating

to zero, we get:

_ _ 1
IBI‘Ie - IBIIC(me) + ¢ (5”‘1«:“2)% =0 (4.74)
%ﬁ + K I3'K(me) — K* I3 = O. (4.75)
F

The left hand side of (4.75) is equivalent to the equilibrium value of the fluid
velocity field v, by definition. Therefore, (4.75) is satisfied trivially for any
rigid rotation equilibrium (we, ve) = (we, 0), Irwe = Aewe. By recalling Iz'q, —

Iz'K(m,) = w,, we observe that (4.74) is equivalent to
! 1 2
we + ¢ (Equ” )ge = 0.

At a rigid rotation equilibrium, we have q, = ITw, = A.we. Therefore, ¢ should

be chosen such that

1

# Gl = - (4.76)

in order to force DL(g., m,) = 0.
Second Variation The second variation D?L is determined by the functional
derivatives:

62L

1 1
3E I3+ ¢ Gllal®)1 + 6" (5 llal*)aq” (4.77)
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6L

Seom —K*Ig! (4.78)
62L _
Smiq ~I5'K (4.79)
6L T
;5?11—2 = -,O_F- + ’C*IEIIC. (480)

The second variation D?L calculated at an equilibrium point (g, m,) is given

by
- ! 1
DL(ge, m)[(6g, 6m)(6g,6m)] = 8¢"(I5" + &' (Gllell)1 + 6" (5 llgel*) aedc ) oq
+ (iémTém + dmTK* I3 K(0m))dz
F PF

- /f smTK* I5'0qdz — 6¢7 I3 K(6m).

Now, we will show that there exist ¢;,cy € R, 00 > €1 > ¢ > 0 satisfying the

inequality
c1/|(8g, 6m)||> > D2L(ge, m,)[(6g, 6m), (6g,0m)] > c,[|(dg, bm)||?

provided we put further restrictions on ¢. First, we recall that L = H + ¢, and
H = i < (¢,m), T %(g,m) >. Therefore, D°L = D’H + D*¢ and by using

(4.76), we can write
D*L(g., m.)[(6¢, 6m), (6g,6m)] = < (8g,6m), T (dg,m) >

1 1
+6qT(¢’(§I|qe||2)qeqf - 1)

Note, that D2?L differs from 7! only by a quadratic form defined on a finite
dimensional space. Therefore, provided ¢” is finite and A, # 0, boundedness
of the operator 7! implies the boundedness of D?L. On the other hand, as
we have shown in chapter 3, 7! is a bounded operator. Therefore, there exist

¢; < 0o such that

c1|(8q, 6m)||* > D*L(ge, me)[(0g, 0m), (3¢, 6m)].
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Now, we try to find sufficient conditions to satisfy the inequality:
D?L(g., me)[(6g, 6m), (6¢,dm)] > c5||(6¢, 6m)||? (4.81)

for some c; > 0. To this end, we define two new parameters oy and ~:

L1

A = Amin(I5" = 3=+ ¢"¢eqc”) (4.82)
€

v= 5Kl (4.83)

Then, we have the following inequalities:

_ 1 _ 1
8¢ (I5" = -+ 8"0.")00 > Amin(I5" = 1= + ¢"0ea.")|0gel* (4.84)

= ayl|oql” (4.85)
and
8¢ I5'K(6m) < [[I5'K|{|dq]|l|dml] = vl|6q||l|éml]. (4.86)
Now, we do a simple calculation
<m,K*I3'K(m) > = < K(m),Iz'K(m) > (4.87)
= (K(m))"I5"(K(m)) (4.88)
> Amin(I5") 1K (m)][*. (4.89)

Then, from the positive definitness of the moment of inertia matrix Iz, we get

K*Iz'K > 0. From this result, we obtain another inequality:

T
/ (CDOM | TR I Kbm)de > — [ 6mTomdz = —|sml|?  (4.90)
P PF Pr JF PF

Furthermore, by using (I5'K)* = K*I5!, we get

/J__émTIC*IB?léqd:c+5qTI§11C(5m) = 26¢"I5'K(6m) (4.91)

< 27[|6g||l|om]|. (4.92)
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Therefore, by using the inequalities given by (4.84), (4.86), (4.90), (4.92) we

obtain:
1
D?L(ge, m.)[(8q, 6m), (6q, 6m)] > ay||6g||® — 2v]|0q||||0m]| + ;;Ilémllz-

Note that, the right hand side of the above inequality is quadratic in (||6¢/|, ||6m)||),

therefore we can write the right hand side as

ag — || liddl

[ 15qll 16w |

=7 5z || lémll

Let 3 € R be the minimum eigenvalue of this quadratic form. Then, the in-

equality

D*L(ge, me)[(8q, 6m), (8g,6m)] = A(|8ql* + ||om]|*)

= B||(dg, ém)||*
is satisfied for 8 > 0, provided the conditions
a, >0 (4.93)
ag > ppy? (4.99)

hold. Note that, since pg is positive it suffices to check only (4.94). Also note
that oy depends upon both the function ¢ and the system parameters. Let ¢"
be chosen as positive, then ¢"q.q? be a positive semi-definite matrix. Therefore,

we get
1

1
— X:)'

Ae

Consequently, the inequality oy > ppy?, which assures that the spectrum of

@y = Amin(I5" +6"%4; ) > Amin(I5" — (4.95)

D?L is bounded below from zero, is satisfied provided

a1 -
0y > Amin(I5" — =) > pry* = prllI5 K (4.96)
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Therefore, a rigid rotation equilibrium is stable if inequality (4.96) holds. We

present this result as a theorem.

Theorem 4.2 Let (g., m,) be a rigid rotation equilibrium of a rigid body con-
taining ideal incompressible fluid (4.67), (4.68). Then, this equilibrium is stable

w.r.t. the norm ||(g, m)||?> = ¢*q + f mTmdz, provided

a1 -
)‘min(IBl - Xe) > pFHIBlK:H2'

Remark: Note that, the inequality condition of this theorem is very similiar in

form to the stability condition

1 _
’\min((IB1 - Xe)qel) > PF”(IBIIC)Q,%”2 (4-97)

we obtained in the previous section by using the ratio of the energy to momen-
tum casimir as a Lyapunov function. Indeed, the inequality given in theorem 4.2
implies (4.97).

Remark: To the best of our knowledge, this is the first exact result in the lit-
erature for the stability of rigid rotations which considers the dynamics of rigid
bodies containing fluids as infinite dimensional models. Some stability condi-
tions for the same problem have been developed in [65]. However, those results
were derived either by using a finite dimensional model for the rigid body-fluid
system or by checking the stability only w.r.t. a finite number of the dynamical
variables.

Remark: Stability of the rigid bodies with flexible appendages is studied by
Krishnaprasad and Marsden [43), where they developed some stability condi-
tions for the rigid rotations of a rigid body-flexible beam system. They proved

that rigid rotations along the “short axis” is stable provided the rotation rate is
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smaller than a specified value which depends upon the structure of the beam.
Compared with this result, our stability condition only depends upon the direc-
tion of the rotations not on the rotation rate. We believe, this reflects an inherent
difference between the rigid body-fluid and rigid body-fl exible appendage dy-
namics. In this particular sense, a flexible appendage is more complex then a
perfect fluid.

In order to interpret the meaning and implications of theorem 4.2 we first

recall the fact ||Ir|| = pF||K||? (from chapter 3, section 2). From this we get:

v=IE'Kl < MEIK)

— - 1
= 15 I(ex" IIp I >

Therefore, pr1? = pilT5'KI12 < T3 IPl1Z¢ . And, the inequality ap > pry? is

satisfied provided

1 1 -
Amin(I5" = 3=) > 15" [P | e (4.98)

Note that this nothing but another sufficient condition for stability of rigid ro-
tations. This condition is more conservative than the inequality of the theorem,
on the other hand easier to check since (4.98) is given in terms of two finite
dimensional operators Ir and Ip.

Remark: If we take the fluid mass as zero pr — 0, then I+ — I and by using
(4.97) we get a sufficient condition for the stability of steady rotations of a rigid
body as:

1
)\mm(Igl - S\—)qéL > 0.
e

We note that this condition is identical to the stability condition for the rota-
tions of a rigid body obtained via an energy-momentum method in [90]. Also

note that, the above condition is always satisfied if A, is the strictly maximum
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eigenvalue of the inertia tensor Iy. This also implies that rigid rotations of a
rigid body containing perfect fluid is stable provided the total fluid mass (or
equivalently ||Ir||) is sufficiently small.

Remark: We remind that, we obtained the conditions of stability for rigid ro-
tations by using the momentum space representation of rigid body-fluid system.
Theorem 4.2 gives a sufficient condition for stability w.r.t the norm ||(g, m)]||? =
¢¥q + [mTmdz. On the other hand, the dynamics can also be expressed in
the velocity space (3.79), (3.80) by using the variables (w,v). Indeed, provided
the inequality of the theorem is satisfied, a rigid rotations equilibrium is also
stable with respect to velocity space perturbations i.e. w.r.t. the norm given
by ||(w,v)||? = wTw + fvTvdz. We note that, this is not automatic. Rather
it depends upon the fact that momentum and velocity variables are related by
a bounded linear operator (7)) with bounded inverse. This implies ||(w, v)|| is
bounded iff ||(¢g, m)|| is bounded, i.e. small momentum perturbations are indeed
small velocity perturbations.

Remark: Due to the difficulty of the problem of existence and uniqueness of
3-d Euler’s equation, we do not address this problem in this study. Hence, the
stability results in this section as well as the ones that will be given in the fol-
lowing sections are conditional upon the existence of solutions of the relevant

dynamical equations.

4.5.1 Effect of Viscosity on Stability

The dynamics of a rigid body containing incompressible viscous fluid is given by

q=qxIz'q—qx I3'K(m) (4.99)
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%‘;‘_ _ (pﬂ _ KT+ KI5 C(m)) X (V xm) — Vs + pAv (4.100)
F

where p > 0 is the viscosity coefficent of the fluid and

v= ;‘5‘- — I3'K(m) + K*T5'K(m).
F

We have studied this equation in chapter 3, section 6 and shown that (apart from
the null solution) rigid rotations are the only equilibrium of (4.99), (4.100). We
have also shown that the magnitude of total angular momentum ||¢|| is conserved
despite the fact that the energy of the system is dissipated in due to the viscosity.

Now, we recall that the hypothesis of theorem 4.2 only assures that the function

L{g, m) = H(g,m) + o(3ql)

is a valid Lyapunov function candidate for the rigid rotations equilibria provided
¢ is chosen appropriately. The stability comes from the constancy of L along
the solutions of the rigid body containing perfect fluid. Therefore, the very same
Lyapunov function is also a Lyapunov function candidate for the viscous fluid
case. The only difference is that the function L is no longer a constant of motion.
By using our previous analysis in chapter 3, section 6, we can easily calculate L

along the solutions of (4.99), (4.100):
L = H+¢=H
= u/vTAvd:v < —)\m/vTvdx <0.

where ), is the smallest eigenvalue of —A. Therefore, L < 0 and a rigid rotation

of a rigid body containing incompressible viscous fluid is stable provided

1 1 -
Amin(I5" = 3=) > prllI5 K|,
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If we restrict our attention to smooth v solutions, then, it is easy to see that v —
0 in time. As we have already shown in chapter 3, the only consistent solution of
rigid bodies containing viscous fluids with v = 0, is the rigid rotation equilibria
i.e; (We,Ve) = (we,0), ITwe = Awe. However, this fact together with L<o
doesn’t imply the asymptotic stability of a rigid rotation (we,0), since the rigid
rotations are not isolated equilibria. In other words, after small perturbations to
a rigid rotation, the system returns to rotate along the same axis but possibly
with a slightly different speed. However, if the perturbation is small, then the

shift in the rotation rate w cannot be large.

4.6 Velocity Control Problem

The free dynamics of a rigid body containing ideal incompressible fluid allows the
rigid rotations along the principal axes of the total moment of inertia matrix I
as equilibria. Our previous analysis in section 4.5 has produced some sufficient
conditions for the stability of these equilibria. As implied from our analysis,
stability of a rigid rotation along the short axis is assured for small fluid mass. On
the other hand, the rotations along the middle and long axes are not necessarily
stable even for infinitesimally small fluid mass. Furthermore, a rotation around
an arbitrary axis need not be an equilibrium point of the system, let alone stable.
In this section, we will study feedback controls which stabilize the rigid rotations
associated with arbitrary angular velocities.

Let u € R be an external control torque acting on a rigid body. Then, the

equations of motion describing a rigid body containing perfect fluid, expressed
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in terms of the velocity variables, are given by

Itw = Irw x w+ K(prv) x w — K(prvy) + u (4.101)

0
pF(a—Z + (V- V)V+2w X V+a XT)=—Vp— V(%prchzw) (4.102)

where (w,v) € s0(3) x X;. We pose the following problem.
Velocity Control Problem Let wy € R be a fixed vector. Develop a con-
trol law u = f,,(w, v) which forces (we,v,) = (wy,0) to be a stable equilibrium

of a rigid body containing ideal incompressible fluid (4.101), (4.102).

We will restrict ourselves to the controls of the form u = f,,(w,v) = f,, (W),
since the availibity of the fluid velocity field information is not a realistic assump-
tion whereas the angular velocity of a rigid body can be measured accurately.
We approach this control problem in the same spirit we treated the stability
problem. We try to exploit the mechanical nature of the problem in order to
develop a control strategy. We will proceed in three steps to develop a feed-
back control law which stabilizes any rotation around a given axis. First, we
start with a class of controls which do not destroy the Hamiltonian nature of
the dynamics. Then, we further restrict this class of controls such that a given
rigid rotation wy € R3, v = 0 is an equilibrium of the dynamics given by (4.101),
(4.102). In the last step, we will determine the stabilizing control laws among the
class which makes the rigid rotation an equilibrium, by using an energy-casimir
stability analysis. |

Step 1 We recall the interrelation between the momentum and velocity vari-

ables:

g = Irw+ K(ppv)
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m = ppK*(w)+ ppv.
The velocity variables are given in terms of the momentum variables as

w = Ig'q—I5'K(m)

v=2_ K*Iz'q + K*I5'K(m)
PF
Then, (4.101), (4.102) can be represented in a hybrid form as:

¢ = gxw+tu (4.103)
%‘?n = vx(Vxm)-Vs (4.104)
where (¢, m) € N = T (so(3) x X;). We know that the free dynamics, i.e. u = 0,

of the system is associated with the conserved energy

1.,
H(g,m) = 3¢ I5'q — ¢" I5'K(m) (4.105)

171 1
+ = [mTmds + 5 [ mTic [ (m)da
2 PF 2
Then, it is easy to show that for the forced dynamics, the time rate of change of
the energy is given by

a Y

under the action of control u. It is obvious that, the energy H remains constant
under the control inputs of the form u(w) = G(w)w where G(w) = —G¥(w). The
conservation of energy does not necessarily imply that the the resulting closed
loop system (4.103), (4.104) is Hamiltonian, but we will show that this is correct
provided G(w) = G is a constant skew-symmetric matrix. We define g € R? via
d = G. Then, u = Gw = g X w. Futhermore, we can always write u = g X w — ¢

since ¢ = 0. In this notation, the controlled dynamics of a rigid body containing
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ideal incompressible fluid is given by:

¢ = gXw+gxw—4g (4.106)
9 |
a—rf = vx(Vxm)— Vs (4.107)

We define new variables § and m as:

i = q+g (4.108)

= m (4.109)

In terms of these modified momentum variables (4.106), (4.107) can be expressed
as:
§ = §Xw (4.110)

‘—931;‘— = vx(Vxi)— Vs (4.111)
where the relations between the velocity and modified momentum variables are

given by

w = Ig'§—Iz'g— I3'K(m) (4.112)

v = % + KI5 K(m) — K*I5 G+ K* I3 g. (4.113)

The closed loop dynamics can be written solely in terms of the modified momen-
tum variables as:

¢ = §x(I5'q-I5'g-I3'K(m)) (4.114)

om

== (;“;‘ + KI5 () — K* 151 + K*I5'g) % (V x 1) — V44.115)

These dynamical equations can be interpreted as a Hamiltonian system. The

equations (4.114), (4.115) can be written as

((:L m;) = Wg(‘ja Ih)ng
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where W, is a Poisson structure, and H, is the energy of the controlled system

which incorporates the effect of the control u = g x w. The Poisson structure

Wi@ 0
0 Wa(h)

Wg (‘j’ ﬁ"L) =
is determined by the skew-symmetric linear operators

W;i(dla = §xa

Wa(m)b = bx (Vxm)— Vs

where a € s0(3) and b € X;. The energy H, is given by

. P B B
Hy(g,h) = q"15'q—§' I3'K(m) + 3 ;,;medx

1
+ 3 / AT 5K (m)de — 1549 + / T 51 gds

We observe that, H, differs from the energy of the free dynamics (4.105) only
by a linear term in form. We also note that, the structure W, is identical in
form with the Poisson structure W of the rigid body-fluid bracket we defined in
chapter 3, section 5. Particularly, we have W, (g, m) = W (g, m). Therefore, W,

is a Poisson structure too. We calculate the functional derivatives of H:

O0H 1~ _ ~
’(5_~g: qu—IBlg—IBIIC(m)zw
q
0H m . . .1~ N

Therefore, it is easy to see that

¢ | [ Wi@ 0 o
m, 0 Wa(m) o
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yields

ijz(jxw

— = vx(Vxm)-Vs

which is equivalent to (4.114), (4.115). Therefore, our claim that the closed
loop dynamics is hamiltonian is justified. As a direct result of the hamiltonian
structure, H, is constant along the solutions of (4.114), (4.115). We also note
that ||g|| is another constant of motion for the dynamics of the closed loop system.
Remark: Under the action of the proposed class of controls, i.e. u = g X w, the
dynamics of rigid bodies containing fluids preserve their conservative structure,
but we had to redefine the dynamical variables as well as changed the energy
of the system. We note that, the total angular momentum of the system g and
the modified momentum variable § differ only by a constant term g. Therefore,
g can be interpreted as a momentum shift. Indeed, (4.106) has the form of
equations of a gyrostat. Therefore, the controls of the form u = g X w can be
implemented by placing a momentum wheel in the body and spinning it such
that its angular momentum w.r.t. rigid body is g. Of course, this control can
also be implemented by using external torque jets on the rigid body.

Step 2 We show that, it is possible to assign an arbitrary rigid rotation as
an equilibrium point of the controlled system.
Claim: Let wy € R3 be a given angular velocity vector. Let g,, be chosen s.t.
9w, = (al — IT)wg,a € R. Then, the control u = g,, X w makes (w,v) = (wp, 0)
an equilibrium point of the controlled system (4.101), (4.102).

Proof: Under the suggested control input, (4.101), (4.102) can be written as:

Itw = Itw X w+ K(ppv) x w — K(prv:) + (al — IT)wp X w
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pF(%‘t—’ +(v-V)Iv+2wxv+wxz)=-Vp-— V(%deJ%).
First, we note that the right hand side of the second equation above vanishes pro-
vided v = 0 and w = 0. Then, by substitution it is easy to see that (w,v,w,v;) =
(wo,0,0,0) satisfies the equations above. Therefore, (w,v) = (wg,0) is an equi-

librium point of (4.101), (4.102). .

We remind that (4.101), (4.102) are dynamically equivalent to (4.114), (4.115).
Therefore, g, = Itwy + guy, Me = ppK*(wo) is an equilibrium of (4.114, 4.115).

Step 3 Up to this point, we have shown that under the feedback control
u = (al — Ir)wp X w, the closed loop system can be written as a Hamiltonian
system which takes w = wy, v = 0 as an equilibrium point. Now, we show that
it is possible to choose the free parameter a € R in the control law, such that
this equilibrium is stable. We will do this by an energy-casimir analysis which
will be very similiar to the one we have carried out in the previous section of
this chapter.

We consider the function
V(g m) = Hy(d m) + 6(3 4]
which is conserved along the solutions of the controlled equation (4.114), (4.115)
or equivalently (4.101), (4.102), because H, and ||§|| are constants of motion. We
will show that the parameter a, which enters into V' via H, can be chosen such
that V is a Lyapunov function. In other words, we are looking for the values
of a which makes the first variation DV vanish at the given rigid rotation while

making D?V positive definite at this equilibrium.

First Variation We calculate functional derivatives of V:

1% 1. _ _ N 1, oy~
5—6 = qu - IBlg - IBllC(m) + ¢I(§”ql|2)q
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(SV_ﬁ'l * 7—1 ~ * 71~ * 7—1
(5rh—pp+’CIB K(m) - K*I5 4+ K*Ig'g.

Calculating these derivatives at a rigid rotation (w,v) = (wo,0) or equivalently

at (¢, m) = (Itwo + guy, K*(prws)), and equating to zero, we get
1, . 0n -
wn + ¢ (5127 = 0
v, = 0.
Substition of §. = Itwy + gu, = ITwo + (al — I7)wp into the first equality yields
/ 1 ~ 112
wo + ¢ (5”%“ Jawo = 0.

Therefore, the fuction ¢ should be chosen such that

1 1
¢'(§||§e|l2) =—

in order to comply with the first variation condition.

Second Variation As we observed before, the energy H (4.105) of the free
dynamics of a rigid body containing perfect fluid differs from the energy H, of
the closed loop system in form only by a linear term. Since both H and H, are
quadratic, their second variations will be identical. By using this fact and by
drawing from the derivations we performed in the previous section, the second

variation D2V can be written down by using a formal matrix representation as:

I—l_l+¢r/q~q~T —I_IIC
D (g, ) =| ° ¢ T i
_gxr—1 T *7—1
K*Ig oo T KI5 K
where we used the first variation condition ¢’ = —%. As in the previous sec-

tion, the boundedness of the operator D?V follows from the boundedness of the

operator 7! provided a # 0 and ¢" is finite. We define

- _ 1 -
@ = /\min(IBl - E + ¢HQeQeT)

¥ = |I5'K|.
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Then, by using the exactly same arguments as in the previous section, it can be
shown that

D*V (de, 1. )[ (64, 61), (64, 6x)] > B|| (64, oxr) |2

for some 8 > 0 provided & > pp7? > 0. In other words, the second variation

condition on D?V is satisfied provided
1 ~ o~ —
Amin(I5" = =+ ¢"%:4.") > pr|15'KI. (4.116)

We have the inequality

_ 1 o _ 1
/\min(IB1 - E + ¢,’QeQeT) Z )\min(IBl - E) (4117)

provided ¢” > 0. Therefore, (4.116) is satisfied if Amin(I5" — L) > pr||I5'K|%
Consequently, we have proved the following theorem which provides an answer

to the velocity control problem we posed at the begining of this section.
Theorem 4.3 Let a € R be chosen such that the inequality
1 14|12
)‘min(IB - E) > pF“IB ’C” .
is satisfied. Then, the linear control law
uw(w) = (a1l — It)wg X w

stabilizes the rigid rotation equilibrium (w,v) = (wo, 0) of a rigid body containing

ideal incompressible fluid (4.101), (4.102).

In order to understand the stabilizing effect of the proposed control law, we
look at how it works if wy is chosen as an eigenvector of Iy. This corresponds

to the problem of stabilizing the rotations about a principal axis of the rigid
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body-fluid system. Let wy = w,, where Irw, = Aew,. Then, the proposed control
is given by

u(w) = (a1l — Ir)wo X w = (a — Ae)we X w.

We define d = a — \,. Note that, |d| is a measure of the gain of the controller.
|d|] = 0 corresponds to the case in which there is no controller. Large |d| is
associated with large gains, hence with large control efforts. The inequality
(4.116), which assures the stability of the rigid rotations under the action of the

controller can be written as

Amin(I5" — + ¢"G.6.7) > prllI5 K| (4.118)

1
Ae +d
by using a = A, + d. Note that if we take d = 0, then (4.118) becomes equiv-
alent to the inequality condition of theorem 4.2 which assures the stability of
an uncontrolled rigid rotation as expected. We also note that, the net effect of
the proposed controller is to shift the value of A, which can be interpreted as
the principal moment of inertia in direction w.. Hence, the controller changes
the moment of inertia component associated with the rotation direction in or-
der to stabilize a rotation. For a rigid body, i.e. pr = 0, negative and large d
satisfies (4.118) hence stabilizes the rotation. This means, in order to stabilize
the rotation of a rigid body along a principal axis, we can place a momentum
wheel in the rigid body which is aligned in the direction of rotation and spin it
in the opposite direction with high speed. This method, known as the dual spin
control is a widely used stabilization method for the rotations of spacecraft and
had been studied in [42]. As is evident from our analysis, the same strategy ba-
sically works also for rigid bodies containing fluids. But in this case, the amount

of spin should be chosen more carefully. By using theorem 4.116, it is easy to
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show that if the controller parameter a lies in the range given by the inequality
0>a> —(pr|lI5'K|%)™

then the specified controller stabilizes the rotation of a rigid body-fluid system
around any of the principal axes of the total mass distribution.

Remark: We developed a controller to stabilize the rotations of a rigid body-
fluid system by applying a feedback which preserves the hamiltonian structure of
the equations. Stability and control of rigid bodies in hamiltonian settings had
been studied in various works including [42], [14], [17], [3], [90]. The underlying
idea in all these studies is to solve the stabilization problems in a conserva-
tive setting. The main advantage of this approach is to be able to use stability
methods like energy-casimir, energy-momentum, etc. to address the stabilization
problems. In particular, [42] discusses the dual-spin problem for rigid spacecraft
and interpretation of the system as Lie-Poisson equations. In [14] and [17] it has
been shown that the rotations around the intermediate axis can be stabilized by
applying a quadratic structure preserving torque feedback along the major or the
minor axis. The stabilization of uniform rotations of a rigid body around an arbi-
trary axis is studied in [90] by working out the problem in an energy-momentum
framework. Our solution to the velocity control of rigid bodies containing fluids
is inspired by these studies. As opposed to the previous studies, which inves-
tigated finite dimensional dynamics of rigid bodies, here we solved an infinite

dimensional stabilization problem for the rigid body-fluid interaction.
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4.6.1 Effect of Viscosity

If the fluid in the cavity is viscous, then the dynamics of the controlled system

can be written as

§ = §xw (4.119)

— = vx(Vxm)-Vs+ puAv (4.120)

where p is the viscosity coefficient of the fluid. We recall that, m = m. There-
fore, as we have pointed out in chapter 3, (4.120) is equivalent to the Navier-
Stokes equations in an accelerating reference frame. We also note that the only
difference between (4.119), (4.120) and (4.110), (4.111) is the viscous term pAv.
We know that (w,v) = (wp,0) is an equlibrium of (4.110), (4.111), therefore it
is also an equilibrium of (4.119), (4.120) since if v = 0 then the viscous term
drops and the two equations becomes identical. We also recall that the inequality
condition in theorem 4.3 only assures that V is a valid Lyapunov function sat-
isfying the first and second variation conditions at a rigid rotation equilibrium.
Conclusion of the theorem depends upon the fact that V' is constant along the
solutions. If the controller parameter a is chosen as it is specified by theorem 4.3,
then the very same controller also works in the viscous case. Since this time V'
is not constant but non-increasing:

V = H,+é=H,

o= s [

= Wwi§+ / vimdz
F

= ;u/ vIAvdz < —p)\l/ vivdz
F F
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where A is the smallest eigenvalue of —A. The viscosity coefficient y and \; are
positive, hence L < 0. Therefore, for the proposed controller the effect of viscosity
is not destabilizing rather it helps to the stability of rotations. But, this is by no
means a manifestation of the stabilizing effect of dissipation. Indeed, control and
stability results developed in a conservative framework need not be robust w.r.t.
dissipative perturbations. For an interesting discussion of dissipation induced

instabilities, see [15].

4.7 Attitude Control Problem

The attitude control problem of rigid bodies received considerable attention in
control theory circles. Some of these efforts are exemplified by the papers [63],
[28], [23], [84], [85], [20], [81]. These works use various methods ranging from
feedback linearization to Lyapunov techniques. On the other hand, the attitude
control problem for a rigid body containing fluid has not been studied before.
This is partially because of the absence of good models describing the dynamics
of rigid body-fluid interaction. Having developed such models in this study, we
can address the attitude control problem for a rigid body containing fluid. We
will study the following problem in this section.

Attitude Control Problem: Consider the dynamics of a rigid body con-
taining incompressible fluid. Let Y € SO(3) denote the orientation of the system
w.r.t. an inertial reference frame. Let Yy € SO(3) be a given orientation. De-
velop a control method which forces Y (t) — Y, as t — oc.

As in any control problem, we have two alternatives: open loop control (mo-

tion planning) and closed loop (feedback) control. In principle, motion planning
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on the rotation group SO(3) can be interpreted as a trivial problem. Since, the
kinematics on SO(3) is given by the equation ¥ = Y and Y is non-singular,
any desired trajectory Y4(t) can be achieved by choosing Q(t) = Y7 (¢)Yy(¢). Of
course, this assumes that we have full control authority over the angular velocity
w. In the case of a rigid body containing fluid, the effect of the fluid motion on
the rigid body manifests itself as a disturbance on the angular velocity. There-
fore, it is not plausible to consider the angular velocity € as a means of control
for the orientation of the rigid body-fluid system.

As far as the feedback control is concerned, the only feasible control input
is the external torque applied on the rigid body. Furthermore, only the angular
velocity w and the attitude information Y could be used to manipulate the con-
trol torque, since only these are the dynamical variables which can be measured
accurately.

As we have shown in chapter 3, the kinematic equation Y = Y drops from
the dynamics of a rigid body containing fluid due to the dynamical symmetries
inherent in the system. Now, we have to incorporate this kinematic equation
back into the dynamics, since we try to control the orientation of the system. In
this “symbolic” form, the equation Y = YQ is of little help in order to develop a
control method for the attitude control problem. In order to deal with the atti-
tude control of a rigid body, we choose a specific representation for SO(3). Our
choice will be the Euler parameters, although any other parametrization could
be used. In order to introduce Euler parameters, we first present a well-known

theorem of rigid body kinematics.
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Theorem 4.4 Euler Let C € SO(3). Then, we can write C as
C =1+ (1 - cosg)aa — singa
for some a € S? and ¢ € S*.

Remark: In classical terms, the Euler theorem codifies the fact that any ori-
entation of a rigid body (with a point fixed) can be obtained by rotating the
rigid body along an axis passing through the fixed point. In geometric terms,
the Euler theorem is related to the fact that S*> = SO(3)/SO(2) = SO(3)/S".
For more on Euler theorem and in general kinematics on SO(3) see [61], [5].

Euler Parameters The Euler parameter (¢, 7) associated with C € SO(3) are

defined as
€= asin(g) (4.121)
n= cos(g). (4.122)

The rate of change of Euler parameters [38] are given by:

1
é = —2—(e><w+77w) (4.123)
1
n o= —ieTw (4.124)

where @ = Q is the angular velocity in body coordinates and Q = CCT. Here,
C is the matrix of direction cosines which determines the orientation of the
inertial reference frame w.r.t. the body frame. The rotation matrix Y, which
in our natation gives the orientation of the body frame w.r.t. inertial frame
is determined by Y = CT. We note that, the attitude kinematics expressed
in terms of the Euler parameters are linear. This linearity is an advantage
from a computational viewpoint and lies behind the popularity of the Euler

parameters in real-time applications. The price we have to pay for this linearity
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is to have to use four parameters instead of the minimal three as in the Euler
angles parametrization of SO(3). However, the four Euler parameters cannot be
totally arbitrary. From their definitions, it is easy to check that (e,7) should
satisfy the condition

fe+n?=1. (4.125)

In other words, Euler parameters lie on the sphere S3. We can easily check that,
S? is invariant under the dynamics defined by (4.123), (4.124).
By using the Euler parameters, we give the full attitude dynamics of a rigid

body containing incompressible fluid as:

g = gXw+u (4.126)
%—T = vx (V xm)—Vs+pAv (4.127)
¢ = %(e X W+ nw) (4.128)
o= —%eTw (4.129)

where u is the control torque acting on the rigid body and (¢, 1) are the Euler pa-
rameters associated with the matrix of direction cosines of the inertial reference
frame w.r.t. the body frame. Again, here p > 0 is the viscosity coefficient of
the fluid. Without loss of generality, we will choose the inertial reference frame
as the desired orientation, i.e. Yy = 1. We note that, the Euler parameters
associated with the reference orientation Yy =1 are ¢y =0, no € {—1,1}.

We will develop a feedback control law which forces the orientation of the
system to approach to the reference orientation Yy = 1, by performing a Lya-
punov stability analysis. We start with the following function which we will

subsequently use as a Lyapunov function candidate:

L(g,m,¢,n) = H(g,m) + L(e, n) (4.130)
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where H : N' — R is the energy of the rigid body containing incompressible fluid
1
H(q,m) = 5¢"I5'q - ¢" I5'K(m) (4.131)
Lrl o 1 T s =1
;s +—/~—m mdx-i——/m K*Ig"K(m)dz.
2 PF 2
and L : S® — R is given by
Lie,n) = €F Ae + . (4.132)

Here, A is a 3 X 3 symmetric positive definite matrix with eigenvalues oy > o9 >
o3 > 0. The parameter ¢ € R will be chosen s.t. o3 > ¢ > 0. The importance of
this choice will be evident in the sequel.

First, we investigate the points at which DL vanishes. We know that,
DiH=w , DyH =v.
Therefore, w = 0, v = 0 is necessary for DL to vanishes. In order to determine
the set on which DL vanishes, we consider the following extremum problem:
ext(e’ Ae + cn?)
subject to the constraint
fe+n’=1.
By using a Lagrange multiplier A, we write an equivalent extremum problem:
extM(e,n, ) = ext(el Ae + cn® — MeTe + 1% — 1)).
To solve this unconstrained extremum problem, we take the first partials and

equate them to zero:

%"‘?4 — 24— =0 (4.133)
oM

" 2en—2Mn =0 (4.134)
OM 2

5y — €en +1=0. (4.135)
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Equations (4.133), (4.134), (4.135) are equivalent to the eigenvalue problem

where (e,7) is a normalized eigenvector, i.e. (¢,7) € S3. Let ¢; denotes a nor-
malized eigenvector of A associated with the eigenvalue o;. Then, the solutions

to this eigenvalue problem are given as

M=o, (6n) = (&e,0) (4.136)
Na=0y , (1) = (ke,0) (4.137)
Xs=03 , (n) = (%es,0) (4.138)
M=c , (1) =/(0,%£l). (4.139)

These eight points are the points on the Euler parameter space at which the first

variation DL vanishes. We calculate L at these critical points:

(€,m) = (£€:;,0) = L(e,n) =0

(e,m) = (0,£1) = E(G’ n=c

where i € {1,2,3}. Recall that, we have assumed oy > 03 > 03 > ¢ > 0.
Therefore, the critical points (¢, 1) = (£e€;, 0) are the global maxima and (e,n) =
(0,+1) are the global minima of the function L. The other four critical points
are saddle points of L. We also recall that, the energy H (g, m) is a quadratic
function characterized by a positive definite operator. Hence, (¢ = 0,m = 0) is
the global minimum of H. Therefore, the function L = H + L assumes its global
minima at the points

(¢,m,e,n) = (0,0,0,+£1).
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Note that, these minima are associated with the reference orientation Y = 1.
We also note that, the function L assumes its strict minimum at these points
since both H and L are analytic functions.

Now, we consider the evolution of the Lyapunov function candidate L along
the solution of (4.126), (4.127), (4.128), (4.129) :

: SHT,  [6HT : _
L = 7] + m mydz + 2¢T Ae + 2cny

whu + u/vTAvdx + e A(e x w + nw) — cne’ w

(l

= wli(u+ (TA+n(A—cl))e) + u/vTAvdx

where we used the previous calculations in chapter 3 in order to avoid duplication.

Let the control u be chosen as:
u=—(TA+n(A-cl))e— M(w)w (4.140)
where M(w) = MT(w) > k1 for some positive parameter k. We recall that
/VTAvd:c < —Al/vTvdx

where A; > 0 is the smallest eigenvalue of —A. Then, we get

C;—f < —kwlTw — /VTVd.’L‘ <0. (4.141)

Therefore, L is non-increasing and we have proved the following local stability

result.

Theorem 4.5 The equilibrium points (¢,m,€,n) = (0,0,0,+1) of the attitude
dynamics of a rigid body containing incompressible fluid (4.126), (4.127), (4.128),
(4.129) are stable under the control law

u=(TA+n(A-cl))e—~ Mw)w

provided M(w) = MT(w) > k1, A= AT > 0, Ain(A) > c and k > 0.
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This results holds for both the viscous (¢ > 0) and the inviscid (z = 0) case.
The controller specified in the theorem achieves much more than the content of
the theorem. In order to understand the asymptotic behavior of the closed loop
system, first we look at the inviscid fluid case. If 4 = 0, then (4.141) and the

positiveness of function L implies

lim w = 0. (4.142)

t—ro0

Now, by recalling that It = Ig+ Ir and ¢ = Izw + K(v), we can rewrite (4.126)
as

IBd)=Iwaw+Tf+Tc

where Ty and T, are the torques exerted on the rigid body by the fluid and the

control u respectively. These torques are given by

T. = —("A+n(A-cl))e~ M(w)w (4.143)

Ty = Irwxw — Irw — K(pve) + K(pv) X w. (4.144)

Equation (4.142) implies that, the rigid body comes to a stop as t — oo. There-

fore, the two torques on the rigid body should cancel each other:
Te+T.,=0
as time approaches infinity. This implies the equation
Ird + K(ppvi) = —(F A+ n(A — cl))e (4.145)

should hold at the steady state reached at ¢ = oo. By recalling, m = ppv +
prK*(w) and Ip = ppKK*, we can write (4.145) as

K(m;) = —(€TA+n(A - cl))e (4.146)
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Let d € R3 denotes the right hand side of (4.146). d will be a constant vector
since € = 0, /) = 0 at the steady state. Integrating both side of this equality
w.r.t. time we obtain:

K(m) = dt + do.

Taking the norm of both sides, and squaring them we get:
|1K(m)|? = t2d"d + 2td" dy + di dy.

Therefore, if d # 0 then
lim {|K(m)|* = oo. (4.147)

t—oo

On the other hand, K is a bounded operator. Hence, (4.147) is satisfied iff
lim,_,o0 |m|| = oo. But, this contradicts with L < 0. Therefore, d should be

zero. And, we get the equations

Jim (€A +n(A — c1))e =0 (4.148)
lim K(m,) = 0. (4.149)

which describes the asymptotics of the closed loop dynamics. Of these two,

(4.149) is not very informative, since it is equivalent to
tllglo K(prv) = constant.

Indeed, this is nothing but the conservation of angular momentum of the fiuid.
Therefore, (4.149) doesn’t reveal much about the asymptotics of the velocity
field of the fluid. On the other hand, (4.148) implies that the orientation of the

system approaches to the set characterized by the equation

(TA+n(A—cl))e=0.
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Indeed, this set is finite and coincides with the critical points of function L
(4.136), (4.137), (4.138), (4.139).

Claim: Let A and c be as specified in theorem 4.5. Let (¢,n) € S3. Then the
equation (€TA + n(A — c1))e = 0 is satisfied iff DL = 0 where L = 7 Ae + cn?.
Proof: We divide the solutions (¢,7) € S® to (€TA+n(A —cl))e = 0 into four

disjoint sets:

s = {e=0,n=0}
S = {6740’77:0}
83 = {€=O’7]7é0}

S4 = {6750’77760}

The set s, is empty since it does not lie in S3. Consider the solutions in the set

s4. If a solution lies in s4, then € # 0 should be in the null space of the matrix
(TA+n(A - cl))
By multiplying this matrix from left and from right by ¢, we get
eF(TA+n(A—cl))e=e"é"Ae 4+ ne' (A — cl)e = 0.

The first term on the right hand side is identically zero, since €7éf = 0. On
the other hand, e’ (A — cl)e cannot be zero since Apuin(A) > ¢, n # 0 and
€ # 0. Therefore, no solution satisfying the equation can be in s4. Now, consider
a solution in s,. Since n = 0 the equality is satisfied iff &€ Ae = 0. This in
turn implies that € should be an eigenvector of A. To satisfy the constraint, we
should have eTe = 1. We know that, such solutions satisfy DL = 0. Finally, any

element in sz trivially satisfies the equality. To comply with the constraint, we
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need || = 1. The solutions in the set s, satisfy DL = 0 Finally, we observe that
any solution of DL = 0, i.e. (4.136), (4.137), (4.138), (4.139), either is in s, or

in s3. This concludes the proof of the claim. ]
Therefore, by using the claim and (4.148), we get the following theorem.

Theorem 4.6 Under the action of the controller described in theorem 4.5, the
Euler parameters associated with the orientation of a rigid body containing ideal
fluid approach to the finite set characterized by the equation D1~L(e, n) = 0. The
eight points in this set are given by (4.136), (4.137), (4.138), (4.139).

Remark: We have shown that the proposed controller asymptotically drives
the Euler parameters to a finite set. As we have shown before, the reference
orientation Y, = 1 is associated with two of these points. For the ideal fluid
case, the controller doesn’t cause the velocity field to fade, rather it cancels the
disturbance of the fluid flow on the rigid body asymptotically in time. Note that
this theorem does not claim anything about the asymptotics of the velocity field

V.

4.7.1 Effect of Viscosity

We take the case of viscous fluid (u > 0) and restrict our discussion to smooth

(v) solutions. Under this assumption, (4.141) implies

limw =0 (4.150)
t—00
lim v =0. (4.151)
t—00

By using our previous analysis, (4.150) implies that the Euler variables approach

to the set
(E"TA+n(A—cl))e=0
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as in the ideal fluid case. On the other hand, (4.150) together with (4.151)
implies

=0, fpm=0
Therefore, by using the claim we proved before, we conclude that all (smooth)
solutions of (4.126), (4.127), (4.128), (4.129) approach to one of the following

equilibrium points

(¢,m,e,m) = (0,0,%€,0) (4.152)
(gm,e,n) = (0,0,%¢,0) (4.153)
(¢,m,e,m) = (0,0,%es,0) (4.154)
(g,m,e,m) = (0,0,0,+1) (4.155)

As we have already shown before, (4.155) are stable equilibria for the ideal fluid
case. For viscous case, (4.155) turns into locally asymptotically stable equilibria,
since L = 0 iff w = 0 and v = 0 and the equilibria given above are isolated from
each other. We have also shown that (e,7) = (&e;,0) are the maxima of L,
and (=%eo,0), (tes3,0) are saddle points. By recalling that (¢, m) = (0,0) is the
minimum of the energy H and L = H + L, we conclude that equilibria given
by (4.152), (4.153) and (4.154) are all saddle points of function L. Therefore,
the second variation D?[ will be an indefinite operator calculated at each of
these six equilibria. This observation, together with L < 0 implies that (4.152),

(4.153), (4.154) are unstable. We summarize these results as a theorem.

Theorem 4.7 Consider the smooth solutions of a rigid body containing viscous
fluid (4.126), (4.127), (4.128), (4.129) under the effect of the controller specified

in theorem 4.5. Then, the solutions approach to one of the equilibria given by
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(4.152), (4.158), (4.154), (4.155) as time tends infinity. Among these equilib-
ria, only ({.155) i.e. the equilibria associated with the reference orientation are

stable. The other equilibria are unstable.

The orientation associated with the equilibria (4.155) is the reference orienta-
tion Y = 1. Therefore, the control law we proposed effectively solves the attitude
control problem for a rigid body containing incompressible viscous fluid. How-
ever, we note that the stability of the reference orientation is not in a global sense.
The solutions starting from the unstable equilibria stay there. The obstruction
of the global asymptotic stability is related to the topology of the rotation group
SO(3). Before, clarifying this statment we will make some observations about

the nature of the controller we proposed. The control law
u=—(TA+n(A~cl)e— Mw)w

shows some similarities to the dissipative control methods we introduced in sec-
tion 3. The control u can be interpreted as the sum of two parts. The first part,
which only involves the orientation variables (e, 1), plays the role of a function
which shapes the energy of the uncontrolled dynamics, such that the reference
orientation corresponds to the global minimum of the shaped energy function (or
the Lyapunov function). This term can also be interpreted as a direction com-
mand which forces the rigid body to rotate in a “correct direction” such that
it approaches to the reference orientation. The second part which only involves
the angular velocity of the rigid body is a dissipation term and responsible for
the convergence of the solutions. Indeed, we could develop such control laws by
using different parametrizations of the rotation group SO(3). Better yet we give

the following abstract framework, which could be used with any parametrization
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of SO(3). Let, F(Y) be an analytic function on SO(3) assuming its global min-
imum at Y = I. Then, consider L = H + F' as a candidate Lyapunov function.

Under the effect of a control u, we get:

. 2 SFT
L=w U—,u)qHV” +t’f‘(W YQ)

where @ = . Note that, the last term in the right hand side is linear in & = Q.
Hence, we could write it as f(Y)Tw for some vector valued function f on SO(3)

and obtain
L=w"(u+ f(Y)) = phllv|™
Choose the control u as:

u=—f(Y)+dw)

where d(w) is a dissipative vector field, i.e.
wld(w) < —kllw|f?
for some k > 0. Therefore, we obtain
L < ~kllw|® - ph|v]* < 0.

Then, we can show that the invariant set associated with w = 0, v = 0 is given by
g=0,m =0, f(Y)=0. Since the function F is chosen such that it assumes its
global minimum at the reference orientation Y, = 1, the reference orientation lies
in the above invariant set. However, the reference orientation cannot be the only
solution of f(Y') = 0. This is related to the fact that any smooth function on the
compact set SO(3) assumes both its minima and maxima on SO(3). Therefore,
regardless of the choice for the smooth function F, the controller of the form given

above cannot achieve global convergence to the reference orientation. However,
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from a practical point of view this is not a major problem, since the points which
do not converge to the reference orientation will not form a dense set.
Remark: As seen in this new light, our approach has similar flavor to the
navigation function framework of Koditschek [40], [41]. Our Lyapunov function
L is not exactly a navigation function in the sense of Koditschek. However, their
functionality is similar in creating a function whose gradient shows a “correct
direction” to move.

Remark: Some attitude control methods for rigid bodies which also use Euler
parameters are [81], [84], [85]. As is evident from our derivation, the proposed
controller also covers the pure rigid body case. We note that our control law does
not involve any system parameter. Therefore, it has some inherent robustness
w.r.t. the model parameters. Furthermore, the proposed controller is scalable,
i.e. if u chosen as specified as in this section, then & = au for any o > 0 also

works for the attitude control problem.
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Chapter 5

Conclusions and Future Directions

In this dissertation, we have studied the dynamics, stability and control of space-
craft with fluid-filled containers. We made extensive use of the tools and ap-
proaches of geometric mechanics both in the modeling of the system and in ad-
dressing of the stability and control problems. We have studied the mechanical
and geometric structure of the system in great detail, and used this structural
information to develop stability and control results for spacecraft containing
fluid.

In chapter 3, we have developed a unified model for the dynamics of a rigid
body with fluid-filled cavities. We obtained the model by starting from the
Euler- Lagrange equations followed by a hidden reduction process which divided
out the dynamical symmetries of the system. Since our starting point was very
elementary, we were able to derive the basic equations of the rigid body dynamics
and fluid mechanics as special cases of the complete model for the rigid body-
fluid system. The model is presented in three different but equivalent ways; in
the velocity space, in the momentum space and in a hybrid form. Each of these

representations has certain merits and we used them interchangeably through-
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out the dissertation to study the dynamics and stability problems. We identified
the Hamiltonian structure of the equations in the momentum space as an infi-
nite dimensional Lie-Poisson system. Here, we have shown that the momentum
space can be interpreted as in duality with the Lie algebra of the cartesian prod-
uct of so(3) with the space of incompressible velocity fields. We also identify
the Euler-Poincare structure of the model. With this interpretation, we showed
that our derivation of the model was indeed a Lagrangian reduction process.
This constitutes the first application of the Lagrangian reduction process to a
non-trivial infinite dimensional mechanical system. Also based on the momen-
tum space representation of the model, we have generalized Bernoulli’s equation
for incompressible fluid flow to a Riemannian manifold setting. This generalized
Bernoulli equation transparently shows the Hamiltonian structure of the dynam-
ics and it is more general than Euler’s equation for incompressible fluid flow on
Riemannian manifolds. We incorporated viscosity into the conservative model
by using the Laplacian operator, and showed that the motion of a rigid body
containing a viscous fluid approaches to a rigid rotation asymptotically in time.

In chapter 4, we considered the stability and control of spacecraft with fluid-
filled containers. Here, we made extensive use the mechanical structure of the
model to study the dynamical problems. In the derivation of the stability result
in section 5, the conservation of the energy and the magnitude of angular mo-
mentum of the system played and important role. By using an energy-casimir
approach we showed that for a rigid body containing fluid, rotation about the
short axis is stable provided fluid mass is sufficiently small. In section 6, we
used the results of the previous section to develop a control method to stabilize

the rigid rotation of the rigid body-fluid system along a given axis. Here, again
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we used the conservative nature of the model and developed a linear feedback
controller which doesn’t destroy the conservative nature of the open loop dynam-
ics. For the attitude control problem, which we considered in section 7, we used
the Euler parameters to parametrize the rotation group SO(3). We developed
a feedback controller by shaping the energy function of the system with torque
controls. Here, we used the shaped energy function as a Lyapunov function to
derive the stability properties of the closed loop system. A key feature of the
attitude controller we proposed is that it does not depend upon model param-
eters, hence it has an intrinsic robustness w.r.t. model parameters. In all the
stability and control problems we considered in this chapter, the solutions were
developed by using the conservative model of the rigid body-fluid system. Later,
we showed that the proposed approaches are robust when we account for the
viscosity of the fluid for each case.

This dissertation considered various aspects of the mechanics, geometry, sta-
bility and control of a single complex mechanical system. Although the ap-
proaches taken here, and the results obtained might seem special to a specific
mechanical system, we point out the following directions for future work.

In this dissertation, we studied the dynamics and control of rigid bodies with
fluid-filled containers. This can be interpreted as a special case of a rigid body
with partially filled containers. Although a rigorous formulation of the liquid
slosh problem is difficult due to free fluid surface, the geometric and mechanical
tools we used in this study may prove useful for the partially filled case too.

Another direction for generalization is to generalize the equations for a rigid
body containing fluid to an n-dimensional setting. This would be a coupled

model of the generalized Bernoulli’s equation with a generalized n-dimensional
g
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gyrostat.

We remind that generalized Bernoulli’s equation is more general than Eu-
ler’s equation. In particular, Bernoulli’s equation is capable of describing the
dynamics of an incompressible fluid in rotating reference frames, hence it can be
a starting point to geometrize the theory of rotating fluids [36].

Our model for a rigid body containing fluid is also relevant to the dynamics
of celestial objects with non-rigid interiors (such as planet earth). Although such
mechanical problems have been subject to some classical studies, the geomet-
ric approach we took in this study might be useful to reconsider this classical
problem.

A direction which might be useful from an engineering point of view is the
investigation of the effect of container shape on the stability of spacecraft. The
stability result which we developed in chapter 4, section 5 for the rigid rotations
of a spacecraft with fluid can be used to study the optimal shapes for containers
which allows the maximum the amount of fluid that can be stored in a spacecraft
without causing instability.

In chapter 4, section 6, our approach to the stability of rigid bodies containing
fluid was the energy-Casimir method. One might also try the energy-momentum
method [53], to address stability. Such an approach is, in principle, more general
and can be used to study the exotic equilibria of the system which we define in
chapter 3, section 4.

The approach we used to study the velocity control problem of a rigid body-
fluid system could also prove useful for rigid bodies with flexible appendages.
Such a study could generalize the results of [43], [86].

In the process of this study, we are convinced that the forces associated with
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a rotating frame on a conservative system can always be incorporated into the
dynamical equations without breaking the conservative nature of the equations.
We also think that this might be a good way of geometrizing (generalizing) the
equations of some physical phenomena.

In this study, there are some formal results which could be treated in a more
rigorous sense. In chapter 4 section 4, we give Bernoulli’s equation as an example
of a Hamiltonian system with quadratic energy and casimir. As a result of a
formal analysis, we showed that Beltrami flows cannot be stable equilibria of the
Euler’s equation. To our knowledge, this formal result is novel and certainly it
deserves further investigation. We also think that Beltrami flows (which seem to
be a forgotten notion in fluid mechanics) might be of some use in understanding
turbulence in fluids.

Another part which deserves further study is the role of (infinite dimensional)
positive real controllers for the stabilization of Lagrangian systems. Of course,
the natural tool to study this framework in a rigorous sense is the theory of
semi-groups for evolution equations.

In our consideration of the attitude control problem, we realized that the
global control theory for systems defined on manifolds is far from being a well-
established subject. However, we believe that the global control concepts on
Lie groups might be an important special case for a more general global control
theory on manifolds.

The pseudo models, which we introduced in the appendix, for rigid bodies
containing fluids might be used as toy models to study the qualitative dynamics

of fluids in rotating frames.
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Appendix A

Pseudo Models for Rigid Bodies

Containing Fluid

In this appendix, we develop a family of finite dimensional models which “ap-
proximate” in a qualitative sense the dynamics of a rigid body containing fluid.
The dynamical equations of a rigid body containing ideal incompressible fluid,

expressed in terms of the momentum space variables can be written as:

¢ =Wy(e)(Iz'q — Iz'K(m)) (A1)

%’; — Wan(m) (5 = KI5 + K715 K (m) (A.2)
where ¢ and m are the angular momentum of the total rigid body-fluid system
and the momentum field of the fluid respectively. The relations between the
momentum space variables (¢,m) and the velocity space variables (w,v) are

given by
q = Itw + K(ppv) (A.3)

m = ppv + prK* (w). (A4)
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The operators W,(q) and Wi (m) appearing in (A.1), (A.2) are Poisson struc-

tures given by

Wi@a = gxa (A.5)

Wm(m)b = bx (V xm)—Vs (A.6)

where a € R2 2 50(3) and b € X;. As we have shown in chapter 3, we can write

(A.1), (A.2) as a Hamiltonian system
z=W(2)dH(z) (A.7)

where z = (¢, m) € N = T (s0(3) x X3). The Poisson structure W is given by

W, 0
wam=| "
0 Wi (m)
and the Hamiltonian H is
H(g,m) = qulglq — ¢ I3 K (m) + L —1—med:c (A.8)
2 2 F PF

]' T *7—1

+ 3 /fm KI5z 'K(m)dz. (A.9)

We make the following observations about the structure of these equations.

e The momentum space variable z = (g, m) lies in the linear space A. This
linear space can be interpreted as in duality with the Lie algebra so(3) x Xy

(see chapter 3, section 5).

e The Poisson structure W (z) is linear in z and it can be interpreted as a

Lie-Poisson structure on A (see chapter 3, section 5).

e The Hamiltonian H is a quadratic function on V.
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These are the features of the rigid body-fluid model which we would like to pre-
serve in the finite dimensional approximations. In particular, we are interested

to approximate (A.1), (A.2) with a finite dimensional Hamiltonian system
Z=W(3)dH(3)(A.10)
where the following conditions are satisfied.

o The variable Z lies in a linear space which can be interpreted as so*(3) x G*

where G* is the dual of a finite dimensional Lie algebra G.
e W (%) is a Lie-Poisson structure on so*(3) x G*.
e The approximate Hamiltonian Hisa quadratic function on so* x G*.

In order to develop finite dimensional models, we consider the linear space

of “divergence-free” covector fields defined on the cavity of the rigid body:
®={meA'|ém=0}.

We remind that the co-differential operator § acting on covector fields is analo-
gous to the divergence operator acting on vector fields. In particular, dm = 0 iff
V -m! = 0. The linear space ® of divergence-free covector fields is a Lie algebra

(see Lichnerowicz [47]) with the Lie bracket
[a,b] =d(aAb).
Let {¢;} be an orthonormal basis for . Let a,b € ® be expanded as

a=>» a¢ , b=) b
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where a;,b; € R. Then, we have:
[a,b] = d(anb)
= 5(2 aid A Y bid;)
i J
= 603D aibidi A ¢;).
i g

Define S;; € A% by S;; = ¢; A ¢;. Then, we get:

[a, b] = 5(2 E a,-bjSij)
ij
= Z Z a,bJJ(S”)
i
Note that, since §2 = 0 we can write
8(8i5) = 2_ Lo
k

where LY, € R. We note that LY, = —L¥, due to the definition of S;;. Here, we
remind that ¢; is a one-form (covector) , S;; is a two-form and each ij is just a

real number. We have:
[a,b] = Y305 Liaibigx
i 7k
= Y ckdx
k

where ¢ = ¥;%; La:ib; k = 1,2,3,.... Therefore, if {a;} and {b;} are the
sequences formed by the expansion coefficients of a and b respectively, then we

can define a Lie bracket [-, ], on these sequences by:

[{ai}, {bi})e = {ci}

where the components of the sequence {c;} are as defined above. Let 7 be the

linear map giving the expansion coefficients of a divergence-free covector field in
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terms of the orthonormal basis {#;}. Then, by construction 7 is a Lie algebra

isomorphism between ® and the sequence space 7(®), i.e.;
[7(a), 7(b)]. = 7(6(a A b)).

We note that, by construction of the Lie bracket [-,]., the structure constants
of the Lie algebra 7(®) is given by ij. Now, we define an infinite column vector

m as the sequence formed from the expansion coefficients of m, i.e.;
m = {m;} = 7(m).

We also define K € R3** by

K(m) = K(r~}(m))
where K (see chapter 3, section 2) is given as

K(m) = /}_:c X mdz.

Then, the operator K is determined by

Ki=/}_x><¢i(x)d:c i:1,2,3,...

where K; is the i-th column of K.
We define H by H(q,m) = H(g,7"}(m)). Then, by using (A.8), the definition
of K and the orthonormality of {¢;}, H can be written as

i, 1 _ 11 1 o _
H(q,m) = §qTI§1q —¢'Iz'K(m) + E}Eme + +§mTKTI§1K(m).

Furthermore, we can write (A.1), (A.2) in terms of (¢, ) as

¢ =W,(q)(I5'q — I5' K(m)) (A.11)

183



= Wm(m)(p@ ~ RT3 + RTI;' R (m)) (A.12)
F

where W, = W, is as given by (A.5) and Wy, is an skew-symmetric infinite

matrix with the coefficients
(Wa)ij(m) = > Limg 4,5:1,2,3,...
k

We note that, (A.11), (A.12) are only another representation of the full equation
set (A.1), (A.2) in terms of the expansion coefficients 7 of the covector field m.
Now, in order to obtain a finite dimensional model, we will truncate the infinite
vector m. We define m € R™ as the column vector formed from the first n entries

of m. We also define K € R#3*" by truncating K:
Ki=K;, i=1,23,...,n

where K; is the i-th column of K. Finally, we truncate W, and define an n x n

matrix W,, as

(Wi)ij(m) = S LEmyg 1,5:1,2,3,...n.
k

We note that W is a skew-symmetric matrix since ij is symmetric in ¢, j. We
also note that although ij are the structure constants of the infinite dimensional
Lie algebra of the divergence-free covector fields, the truncated version does
not necessarily give the structure constants of a finite dimensional Lie algebra.
Indeed, a necessary condition for this is the existence of a finite dimensional
ideal of the Lie algebra ®. In terms of the truncated structures, we form a finite

dimensional approximate model for the rigid body-fluid system:
i = Wola)(I5'a — I5'K (m)) (A.13)

= Wm(m)(;)”l ~ KTI3'q + KTIZ K (m)) (A.14)
F
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where W, (q) = W,(¢) and W,,,(m) is the skew-symmetric (not necessarily Pois-
son) structure on R" as defined above. We note that, the above approximate
model retains most of the structure of the original equations, yet the Hamilto-
nian structure is lost due the fact that W, is not necessarily a Poisson structure.
Here, we fix this deficiency in a way which involves some arbitrary choices, and
call the resulting equations a “pseudo model”. The equations (A.13), (A.14) will
be called a pseudo model for a rigid body containing ideal incompressible fluid

if the model parameters are chosen according to the following points.

e Let Ip be as in the full model (A.1), (A.2).

e Let W, = W, be the usual Lie-Poisson structure on so(3) as it is given by

(A.5).
e Pick a n-dimensional Lie algebra G with its structure constants ci-“j.

e Form W,, as (Wm)u (m) = X% cfjmk. Note that, W,, will be a Lie-Poisson

k

structure on G* since c;; are the structure constants of G.

e Given the inertia matrix Ir of the fluid mass, choose K € R3*" s.t. Ip =
prK KT. This is essential to keep the consistency between the velocity

space and momentum space representations of the pseudo models.

Then, with these choices (A.13), (A.14) becomes a finite dimensional Hamilto-

nian system with respect to the Lie-Poisson bracket
- W,(q 0
W(g,m) = @ i
0 Wn(m)

and the Hamiltonian A

] 1 11 1
H(q, m) — §qnglq _ qTIBTlK'm—F ingm_i_ +§mTKTIEIKm
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Remark: We emphesize that finite dimensional pseudo models characterize the
rigid body dynamics in an exact way but the dynamics of the fluid motion is cap-
tured only in a qualitative sense. Yet, the essential features of the full dynamical
system are preserved. For example, by construction our pseudo models retain the
Hamiltonian nature of the original dynamics as well as the Lie-Poisson structure.
Furthermore, with some work it can be checked that the equilibrium structure
of the full model and the pseudo models are similar, despite the arbitrary choice
of the Lie algebra G. For example, pseudo models accept rigid rotations as equi-
libria and the stability status of the rigid rotations can be worked out by using
almost identical steps as in chapter 4. Indeed, all control methods we developed
in chapter 4 can be developed by relying on the pseudo models too. Of course,
this is not a merit of the pseudo models we presented here, but a manifestation
of the fact that our stability and control results in chapter 4 depends heavily
upon the “structure” of the equations rather then the parameters appearing in
the models.

Remark: In order to form a pseudo model, we make two arbitrary choices; for G
and for K. Choosing a specific Lie algebra G means choosing G as the phase space
for the fluid flow instead X,. If we choose G = so(3) then the resulting pseudo
model (A.13), (A.14) becomes a Hamiltonian system on so(3) x so(3) & so(4).
Indeed, such a model appears in a book of Fomenko [31] as a qualitative model
for a rigid body containing incompressible fluid. Our pseudo models are more
structured then the one given by Fomenko. His qualitative model is just a Lie-
Poisson system on so(4) with a generic quadratic Hamiltonian. However, here
we know the exact form of the energy of a rigid body containing fluid, and we

only approximated the parameters related to the fluid part of the model.
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Remark: A similiar pseudo-modelling approach [22] exists for the dynamics of
elastic bodies where the configuration manifold for an elastic body is taken as
a finite dimensional manifold by choice. Lewis and Simo [46] considered such a
pseudo-rigid body where they take GL(3) as the configuration manifold of an
elastic continuum, and they studied some stability problems by using the result-
ing pseudo model.
Remark: We also emphasize that the effect of viscosity can be incorporated in
to the pseudo models easily. We can qualitatively approximate the Laplacian
operator A with an n dimensional negative definite matrix R which we add to
the right hand side of (A.14):
m = Wm(m)(gFi ~ KTIz'q + KTI3'K(m)) + Rv.
Expressing this model in terms of the velocity field approximant
v= pﬂF + KTI5 g + KTI5 Km € ®
we get:
pr0 = Wir(ppv)v + W (pr KT (w))v — pr KT (&) + Ru.
This dynamical equation approximates the Navier-Stokes equations w.r.t. a
reference frame rotating with angular velocity w. Finite dimensional quadratic
equations with linear dissipative terms have been studied as finite dimensional
approximations to Navier-Stokes equations in [18], [32], [33]. The finite dimen-
sional models in these works have similar structures (quadratic conservative sys-
tems with linear dissipative terms) and they can be represented in the above

form if we take w =0, w = 0.
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